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Instructions:  1. Answer any FIVE full questions, choosing one full question from each unit. 

          2. Missing data, if any, may be suitably assumed.  
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  UNIT - 1 CO PO Marks 

1 a) If   is the angle between the two regression lines, show that  
2

2 2

1
tan .

x y

x y
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 b) Obtain the lines of regression and hence find the coefficient of 

correlation for the data. 
x  1 3 4 2 5 
y  8 6 10 8 12 
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 c) In a test on 2000 electric bulbs, it was found that the life of a particular 

make was normally distributed with an average life of 2040 hours and 

S.D of 60 hours. Estimate the number of bulbs likely to burn for: 

a)  more than 2150 hours,  b) less than 1950 hours where 

( )0 1.83 0.4664P z  =  and ( )0 1.33 0.0918P z  = . 
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  UNIT – 2    

 
2 

 

a) Verify whether the matrix 

0 0 1

0.5 0.25 0.25

0 1 0

A

 
 

=
 
  

 is a regular 

stochastic matrix. 
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 b) The joint distribution of two random variables X and Y are given below:
 

 

 

 

 

 

Find the marginal distributions of 𝑋, 𝑌 and Cov(X, Y). 

 

        𝑌 

𝑋 
-3 2 4 

1 0.1 0.2 0.2 

2 0.3 0.1 0.1 
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 c) A student’s study habits are as follows. If he studies one night, he is 

60% sure not to study the next night. On the other hand, if he does not 

study one night, he is 80% sure to study the next night. In the long run, 

how often does he study. 
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U.S.N.           



 

 

  UNIT – 3    
 

3 a) Derive the Crank-Nicloson formula to solve the one-dimensional heat 

equation 2

t xxu c u= . 
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 b) Solve 
tt xxu u= , 0 1x  , subject to the initial conditions 

( ) xxu sin0, = , ( ) 00, =xut
 and the boundary conditions  ( )0, 0u t = , 

( )1, 0u t =  using 0.2h =  and 0.2k = . Carry out computations for two 

time-levels. 
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 c) Solve numerically the equation 
t xxu u=  subject to the conditions 

( ) ( ) ( ) 20, 0 1, ; 0 and ,0 2 , 0 2.u t u t t u x x x x= =  = −   Carry out 

computations for two time-levels taking 
1

0.5,
8

h k= = . 
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  UNIT - 4    
 

4 
 

a) Determine the analytic function ( )f z u iv= +  whose real part is 

3 2 2 23 3 3u x xy x y= − + − . 
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 b) If ( )f z is a analytic function of z, then prove that 

2 2
2 2

2 2
( ) 4 ( ) .f z f z

x y

  
+ = 

  
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c) Discuss the transformation 
2w z= . 
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  OR    

5 a) Show that polar form of Cauchy-Riemann equations are 

1 1
, .

u v v u

r r r r 

   
= = −

   
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b) Verify that the function ( )cosxu y e y= +  is harmonic and hence find 

its harmonic conjugate.  
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 c) Find the bilinear transformation that maps , , 0z i=  onto 

1, , 1w i= − − . 
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  UNIT - 5    

6 a) State and prove Cauchy’s theorem. 
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b) Evaluate 
z

C

e
dz

z i


+
 over the following contours C: 

( ) ( )2
2

i z ii z= =  by Cauchy’s integral formula. 
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c) Expand the function ( )
( )( )

1

1 3
f z

z z
=

+ +
 in Laurent series valid for  

( ) 0 1 2, ( ) 1 2.a z b z +  +      
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  OR    

7 a) State and prove Cauchy’s integral formula. 
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b) Verify Cauchy’s theorem for the function ( ) 2f z z=  where C is the 

square having vertices ( ) ( ) ( )0 0 1 0 11, , , , ,  and ( )0 1, . 

 

3 
 

1 
 

7 

 c) Apply Cauchy’s residue theorem to evaluate the integral 

( )( )

2

1 2
C

z

z z− + , where 
5

is the circle
2

C z .=  
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