

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: AS / CV / EEE / ECE / EIE / ML / TCE

Course Code: 19MA4BSEM4

Course: Engineering Mathematics-4

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - 1			CO	PO	Marks														
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	If θ is the angle between the two regression lines, show that $\tan \theta = \frac{1-r^2}{r} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$.			1	1	6														
		b)	Obtain the lines of regression and hence find the coefficient of correlation for the data.	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x</td><td>1</td><td>3</td><td>4</td><td>2</td><td>5</td></tr> <tr> <td>y</td><td>8</td><td>6</td><td>10</td><td>8</td><td>12</td></tr> </table>	x	1	3	4	2	5	y	8	6	10	8	12		1	1	7		
x	1	3	4	2	5																	
y	8	6	10	8	12																	
	c)	In a test on 2000 electric bulbs, it was found that the life of a particular make was normally distributed with an average life of 2040 hours and S.D of 60 hours. Estimate the number of bulbs likely to burn for: a) more than 2150 hours, b) less than 1950 hours where $P(0 < z < 1.83) = 0.4664$ and $P(0 < z < 1.33) = 0.0918$.			1	1	7															
			UNIT - 2																			
	2	a)	Verify whether the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 0.5 & 0.25 & 0.25 \\ 0 & 1 & 0 \end{bmatrix}$ is a regular stochastic matrix.			1	1	6														
		b)	The joint distribution of two random variables X and Y are given below:	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td></td> <td style="text-align: center;">Y</td> <td>-3</td> <td>2</td> <td>4</td> </tr> <tr> <td style="text-align: center;">X</td> <td></td> <td>0.1</td> <td>0.2</td> <td>0.2</td> </tr> <tr> <td>1</td> <td></td> <td>0.3</td> <td>0.1</td> <td>0.1</td> </tr> </table>		Y	-3	2	4	X		0.1	0.2	0.2	1		0.3	0.1	0.1		1	1
	Y	-3	2	4																		
X		0.1	0.2	0.2																		
1		0.3	0.1	0.1																		
	c)	Find the marginal distributions of X , Y and $Cov(X, Y)$.																				
			A student's study habits are as follows. If he studies one night, he is 60% sure not to study the next night. On the other hand, if he does not study one night, he is 80% sure to study the next night. In the long run, how often does he study.			1	1	7														

UNIT – 3					
3	a)	Derive the Crank-Nicolson formula to solve the one-dimensional heat equation $u_t = c^2 u_{xx}$.	2	1	6
	b)	Solve $u_{tt} = u_{xx}$, $0 \leq x \leq 1$, subject to the initial conditions $u(x,0) = \sin \pi x$, $u_t(x,0) = 0$ and the boundary conditions $u(0,t) = 0$, $u(1,t) = 0$ using $h = 0.2$ and $k = 0.2$. Carry out computations for two time-levels.	2	1	7
	c)	Solve numerically the equation $u_t = u_{xx}$ subject to the conditions $u(0,t) = 0 = u(1,t)$; $t \geq 0$ and $u(x,0) = 2x - x^2$, $0 \leq x \leq 2$. Carry out computations for two time-levels taking $h = 0.5$, $k = \frac{1}{8}$.	2	1	7
UNIT - 4					
4	a)	Determine the analytic function $f(z) = u + iv$ whose real part is $u = x^3 - 3xy^2 + 3x^2 - 3y^2$.	3	1	6
	b)	If $f(z)$ is a analytic function of z , then prove that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right] f(z) ^2 = 4 f'(z) ^2$.	3	1	7
	c)	Discuss the transformation $w = z^2$.	3	1	7
OR					
5	a)	Show that polar form of Cauchy-Riemann equations are $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$, $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$.	3	1	6
	b)	Verify that the function $u = y + e^x \cos(y)$ is harmonic and hence find its harmonic conjugate.	3	1	7
	c)	Find the bilinear transformation that maps $z = \infty, i, 0$ onto $w = -1, -i, 1$.	3	1	7
UNIT - 5					
6	a)	State and prove Cauchy's theorem.	3	1	6
	b)	Evaluate $\int_C \frac{e^z}{z+i\pi} dz$ over the following contours C : (i) $ z = 2\pi$ (ii) $ z = \pi/2$ by Cauchy's integral formula.	3	1	7
	c)	Expand the function $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for (a) $0 < z+1 < 2$, (b) $ z+1 > 2$.	3	1	7
OR					
7	a)	State and prove Cauchy's integral formula.	3	1	6
	b)	Verify Cauchy's theorem for the function $f(z) = z^2$ where C is the square having vertices $(0,0), (1,0), (1,1)$ and $(0,1)$.	3	1	7
	c)	Apply Cauchy's residue theorem to evaluate the integral $\int_C \frac{z^2}{(z-1)(z+2)} dz$, where C is the circle $ z = \frac{5}{2}$.	3	1	7

SUPPLEMENTARY EXAMS 2024