

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2023 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: AS/CV/EEE/ECE/EIE/ETE/MD

Duration: 3 hrs.

Course Code: 19MA4BSEM4

Max Marks: 100

Course: ENGINEERING MATHEMATICS- 4

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks														
1	a)	2% of the fuses manufactured by a firm are found to be defective. Find the probability that a box containing 200 fuses contains (i) No defective fuses. (ii) 3 or more defective fuses.	CO1	PO1	6														
	b)	Apply the method of least squares to fit a relation of the form $y = ab^x$ for the data: <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>2</td><td>4</td><td>6</td><td>8</td><td>10</td><td>12</td></tr> <tr> <td>y</td><td>1.8</td><td>1.5</td><td>1.4</td><td>1.1</td><td>1.1</td><td>0.9</td></tr> </table>	x	2	4	6	8	10	12	y	1.8	1.5	1.4	1.1	1.1	0.9	CO1	PO1	7
x	2	4	6	8	10	12													
y	1.8	1.5	1.4	1.1	1.1	0.9													
	c)	If θ is the acute angle between the regression lines relating to the variables x and y then show that $\tan \theta = \left(\frac{1-r^2}{r} \right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$. Indicate the significance when $r = \pm 1$ and $r = 0$.	CO1	PO1	7														
UNIT - II																			
2	a)	Find the joint distribution of X and Y , which are independent random variables with the following respective distributions. Also find $\text{Cov}(X, Y)$. <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>X</td><td>1</td><td>2</td></tr> <tr> <td>$f(X)$</td><td>0.7</td><td>0.3</td></tr> </table> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Y</td><td>-2</td><td>5</td><td>8</td></tr> <tr> <td>$g(Y)$</td><td>0.3</td><td>0.5</td><td>0.2</td></tr> </table>	X	1	2	$f(X)$	0.7	0.3	Y	-2	5	8	$g(Y)$	0.3	0.5	0.2	CO1	PO1	6
X	1	2																	
$f(X)$	0.7	0.3																	
Y	-2	5	8																
$g(Y)$	0.3	0.5	0.2																
	b)	Prove that the Markov chain whose transition probability matrix $P = \begin{bmatrix} 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & 1 & 0 \end{bmatrix}$ is irreducible. Find the corresponding fixed probability vector.	CO1	PO1	7														
	c)	In a certain city, the weather on a day is reported as sunny, cloudy or rainy. If a day is sunny, the probability that the next day is sunny is 70%, cloudy 20% and rainy is 10%. If a day is	CO1	PO1	7														

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		cloudy, the probability that the next day is sunny is 30%, cloudy is 20% and rainy is 50%. If a day is rainy, the probability that the next day is sunny is 30%, cloudy is 30% and rainy is 40%. Find the transition matrix for the change of weather. If a Sunday is sunny, find the probability that the Wednesday is cloudy.			
		UNIT - III			
3	a)	Derive Crank Nicolson implicit formula for the solution of one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$.	CO2	PO1	6
	b)	The transverse displacement u of a point at a distance x from one end at any time t of a vibrating string satisfies the equation $\frac{\partial^2 u}{\partial t^2} = 16 \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(0, t) = 0$, $u(4, t) = 0$, $t \geq 0$, $u(x, 0) = x^2(5-x)$ $0 \leq x \leq 4$ and $\frac{\partial u(x, 0)}{\partial t} = 0$. Solve this equation numerically up to two-time levels, with $h = 1$ and $k = 0.25$.	CO2	PO1	7
	c)	Solve $u_t = u_{xx}$ by Bredre-Schmidt method subject to conditions $u(0, t) = 0$, $u(1, t) = 0$ and $u(x, 0) = \begin{cases} 2x, & 0 \leq x \leq 0.5 \\ 2(1-x), & 0.5 \leq x \leq 1 \end{cases}$ taking $h = 1/4$ and $k = 1/32$ up to 3 time levels.	CO2	PO1	7
		UNIT - IV			
4	a)	Show that $v = -r^3 \sin 3\theta$ is harmonic and hence find the analytic function $f(z)$.	CO3	PO1	6
	b)	If $f(z)$ is a regular function, then prove that $\left\{ \frac{\partial}{\partial x} f(z) \right\}^2 + \left\{ \frac{\partial}{\partial y} f(z) \right\}^2 = f'(z) ^2$.	CO3	PO1	7
	c)	Discuss the transformation $w = z^2$.	CO3	PO1	7
		OR			
5	a)	If $f(z)$ is an analytic function with constant modulus, then prove that $f(z)$ is constant.	CO3	PO1	6
	b)	Determine the analytic function $f(z)$ as function of z , given $u + v = x^3 - y^3 + 3xy(x - y)$.	CO3	PO1	7
	c)	Find the bilinear transformation which maps the points $\infty, i, 0$ of the Z-plane onto the points $-1, -i, 1$ of the W-plane respectively. Also, find the invariant points of the transformation.	CO3	PO1	7
		UNIT - V			
6	a)	State and prove Cauchy's integral formula.	CO3	PO1	6

	b)	Expand the function $f(z) = \frac{z}{(z-1)(z-3)}$ as a Laurent's series in the following regions: (a) $ z < 1$ (b) $1 < z < 3$.	CO3	PO1	7
	c)	Apply Cauchy's residue theorem, evaluate $\oint_C \frac{z^2}{(z-1)^2(z+2)} dz$, where C is the circle $ z = 5/2$.	CO3	PO1	7
		OR			
7	a)	Evaluate $\oint_C \frac{e^{2z}}{(z-1)(z-2)} dz$ where C is $ z = 3$ using Cauchy's integral formula.	CO3	PO1	6
	b)	Evaluate $\oint_C z ^2 dz$ where C is a square with vertices $(0,0), (1,0), (1,1)$ and $(0,1)$.	CO3	PO1	7
	c)	Find the poles and residues at each pole for $f(z) = \frac{z^2}{z^4 - 1}$ which lies inside $ z = 2$.	CO3	PO1	7

B.M.S.C.E. - EVEN SEMESTER 2022-23