

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 19MA4BSEM4

Course: Engineering Mathematics – 4

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Each unit has an internal choice; answer one complete question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - 1								CO	PO	Marks																	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	The results of measurement of electric resistance R of a copper bar at various temperatures $t^0 C$ are listed below:								1	1	6																	
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>t</td><td>19</td><td>25</td><td>30</td><td>36</td><td>40</td><td>45</td><td>50</td></tr> <tr><td>R</td><td>76</td><td>77</td><td>79</td><td>80</td><td>82</td><td>83</td><td>85</td></tr> </table> Find a relation $R = a + bt$ where a & b are constants.								t	19	25	30	36	40	45	50	R	76	77	79	80	82	83	85				
t	19	25	30	36	40	45	50																							
R	76	77	79	80	82	83	85																							
	b)	In a partially destroyed laboratory record, only the lines of regression of y on x and x on y are available as $4x - 5y + 33 = 0$ and $20x - 9y = 107$ respectively. Calculate \bar{x}, \bar{y} and the correlation coefficient between x and y .								1	1	7																		
	c)	Derive an expression for the mean and variance of the Poisson distribution.								1	1	7																		
OR																														
	2	a)	Fit a least square of the form $y = a + bx^2$ for the following data.								1	1	6																	
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>x</td><td>1</td><td>2.5</td><td>3.5</td><td>4</td><td></td><td></td><td></td><td></td></tr> <tr><td>y</td><td>3.8</td><td>15</td><td>26</td><td>33</td><td></td><td></td><td></td><td></td></tr> </table>								x	1	2.5	3.5	4					y	3.8	15	26	33						
x	1	2.5	3.5	4																										
y	3.8	15	26	33																										
	b)	Find the co-efficient of correlation between industrial production (x : in crore tons) and export (y : in crore tons) using the following data:								1	1	7																		
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>x</td><td>55</td><td>56</td><td>58</td><td>59</td><td>60</td><td>60</td><td>62</td></tr> <tr><td>y</td><td>35</td><td>38</td><td>38</td><td>39</td><td>44</td><td>43</td><td>45</td></tr> </table>								x	55	56	58	59	60	60	62	y	35	38	38	39	44	43	45				
x	55	56	58	59	60	60	62																							
y	35	38	38	39	44	43	45																							
	c)	In a test on 2000 electric bulbs, it was found that the life of a particular make, was normally distributed with an average life of 2040 hours and standard deviation of 60 hours. Estimate the number of bulbs likely to burn for i) more than 2150 hours ii) less than 1950 hours iii) more than 1920 hours but less than 2160 hours. Given: $A(1.33) = 0.4082$, $A(2) = 0.4772$ and $A(1.83) = 0.4664$.								1	1	7																		

	c)	Find the numerical solution of one-dimensional heat equation $u_{xx} = 2u_t$ when $u(0, t) = 0 = u(4, t)$ and $u(x, 0) = x(4 - x)$ by taking $h = 1$. Find the values of u upto $t = 5$, given $k = 1$.	2	I	7
		OR			
6	a)	Derive Bende-Schmidt formula for the one-dimensional heat equation $u_t = c^2 u_{xx}$.	2	I	6
	b)	Solve numerically the equation $u_t = u_{xx}$ subject to the conditions $u(0, t) = 0 = u(1, t), t \geq 0$ and $u(x, 0) = \sin \pi x, 0 \leq x \leq 1$. Using Crank-Nicolson method carry out computations for two levels taking $h = \frac{1}{3}$ and $k = \frac{1}{36}$.	2	I	7
	c)	Solve numerically the equation $u_{tt} = 4u_{xx}$ subject to the conditions $u(0, t) = u(5, t) = 0, t \geq 0$, $u(x, 0) = x(5 - x)$ and $u_t(x, 0) = 0$. Carry out computations for two levels taking $h = 1$ and $k = 0.5$.	2	I	7
		UNIT - 4			
7	a)	Derive Cauchy-Riemann equations in cartesian form.	3	I	6
	b)	Discuss the conformal transformation $w = z + \frac{k^2}{z}$.	3	I	7
	c)	Find the orthogonal trajectories of the family of curves $r^2 \cos 2\theta = c_1$.	3	I	7
		OR			
8	a)	If $f(z)$ is a holomorphic function of z , show that $\left\{ \frac{\partial}{\partial x} f(z) \right\}^2 + \left\{ \frac{\partial}{\partial y} f(z) \right\}^2 = f'(z) ^2$.	3	I	6
	b)	If $\varphi + i\psi$ represents the complex potential of an electrostatic field where $\psi = (x^2 - y^2) + \frac{x}{x^2 + y^2}$, find the complex potential as a function of the complex variable z and hence determine φ .	3	I	7
	c)	Find the bilinear transformation that transforms the points $z = 1, i, -1$ on to the points $w = i, 0, -i$.	3	I	7
		UNIT - 5			
9	a)	State and prove Cauchy's theorem.	3	I	6
	b)	Obtain the Laurent's series expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the region (i) $ z < 1$ (ii) $ z > 2$.	3	I	7
	c)	Evaluate $\int_C \frac{z^2 - z + 1}{z-1} dz$ where C is the circle (i) $ z = 1$ (ii) $ z = \frac{1}{2}$.	3	I	7
		OR			

10	a)	State and prove Cauchy's integral formula.	3	I	6
	b)	Using Residue theorem, evaluate $\int_C \frac{dz}{z^3(z-1)^2}$ where C is the circle $ z =2$.	3	I	7
	c)	Verify the Cauchy's theorem for the function $f(z)=z^2$ over the boundary of square having vertices $(0,0)$, $(1,0)$, $(1,1)$ and $(0,1)$.	3	I	7

B.M.S.C.E. - EVEN SEM 2024-25