

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Mechanical Engineering

Course Code: 19MA4BSHEM

Course: Higher Engineering Mathematics

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks																				
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Find the coefficient of correlation and the lines of regression for the following data:	x	36	23	27	28	28	29	30	31	33	35	y	29	18	20	22	27	21	29	27	29	28	CO1	PO1	6
	2	b)	Suppose it has been observed that, on an average, 180 cars per hour pass a specified point on a particular road in the morning rush hour. Due to impending roadworks it is estimated that congestion will occur closer to the city center if more than 5 cars pass the point in any one minute. What is the probability of congestion occurring?	CO1	PO1	7																						
		c)	The average number of acres burned by forest and range fires in a large New Mexico county is 4,300 acres per year, with a standard deviation of 750 acres. The distribution of the number of acres burned is normal. What is the probability that between 2,500 and 4,200 acres will be burned in any given year?	CO1	PO1	7																						
			OR	CO1	PO1	6																						

6	a)	Find an analytic function $f(z) = u + iv$ whose imaginary part is $v(r, \theta) = \left(r - \frac{1}{r}\right) \sin \theta$.	CO3	PO1	6
	b)	If $f(z)$ is analytic, show that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right] f(z) ^2 = 4 f'(z) ^2$.	CO3	PO1	7
	c)	Find the bilinear transformation which maps the points $z = \infty, i, 0$ into the points $w = -1, -i, 1$. What are the invariant points of the transformation.	CO3	PO1	7
UNIT - V					
7	a)	State and prove the Cauchy's theorem.	CO3	PO1	6
	b)	Obtain the Laurent series expansion of $\frac{e^z}{(z-1)(z-3)}$ in the following regions (i) $1 < z < 3$ (ii) $ z - 1 < 2$	CO3	PO1	7
	c)	Using Cauchy's residue theorem evaluate $\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$ where C is the circle $ z = 3$	CO3	PO1	7
