

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E

Branch: Mechanical Engineering

Course Code: 19MA4BSHEM

Course: Higher Engineering Mathematics

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 14.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) The two regression equations of the variables x and y are $x=19.13-0.87y$ and 6
 $y=11.64-0.50x$. Find (i) mean of x (ii) mean of y (iii) the correlation co-efficient between x and y .

b) Fit a curve of the form $y = ab^x$, in the least square sense, to the following data: 7

x	0	2	4	5	7	10
y	100	120	256	390	710	1600

c) The number of accidents per day (x) as recorded in a textile industry over a period of 400 days is given. Fit a Poisson distribution for the data and calculate the theoretical frequencies. 7

x	0	1	2	3	4	5
f	173	168	37	18	3	1

OR

2 a) If θ is the angle between the two regression lines, show that 6

$$\tan \theta = \left(\frac{1-r^2}{r} \right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$$
. Explain the significance when $r=0$ and $r=\pm 1$.

b) While calculating correlation co-efficient between two variables x and y from 25 pairs of observations, the following results were obtained: $n=25$, $\sum x=125$, $\sum x^2=650$, $\sum y=100$, $\sum y^2=460$, $\sum xy=508$. Later it was discovered at the time of checking that the pairs of values $x: 8 \quad 6$ were $y: 12 \quad 8$ copied down as $x: 6 \quad 8$. Obtain the correct value of correlation co-efficient. 7

c) In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution, given that $A(0.5)=0.19$ and $A(1.4)=0.42$, where $A(z)$ is the area under the standard normal curve from 0 to $z > 0$. 7

UNIT - II

3 a) A student's study habits are as follows. If he studies one night, he is 70% sure not to study the next night. On the other hand, if he does not study one night, he is 60% sure not to study the next night. In the long run how often does he study? 6

b) The joint probability distribution of two random variables X and Y is given below: 7

\backslash	Y	- 4	2	7
X	1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$
5	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

Find i) the marginal distributions of X and Y
 ii) $E(X), E(Y)$ iii) σ_x, σ_y iv) $Cov(X, Y)$.

c) The joint probability function of two random variables X and Y is given by $f(x, y) = c(2x + y)$ where x and y can assume all integral values such that $0 \leq x \leq 2$, $0 \leq y \leq 3$ and $f(x, y) = 0$ otherwise. 7
 Find i) the value of the constant c ,
 ii) Marginal Probability distribution of X and Y .
 Also check whether X and Y are independent.

UNIT - III

4 a) Derive the Crank-Nicolson implicit formula for the solution of one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$. 6

b) Solve the heat equation $u_t = u_{xx}$ subject to the conditions $u(x, 0) = \sin(\pi x)$, $0 \leq x \leq 1$; $u(0, t) = 0 = u(1, t)$, $t \geq 0$ using Schmidt method by taking $h = \frac{1}{3}$, $k = \frac{1}{36}$ up to $t = \frac{1}{18}$. 7

c) Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, $0 \leq x \leq 1$, subject to the initial conditions $u(x, 0) = \sin \pi x$, $u_t(x, 0) = 0$ and the boundary conditions $u(0, t) = 0$, $u(1, t) = 0$ taking $h = 0.2$ and $k = 0.2$ up to two time levels. 7

UNIT - IV

5 a) State and prove polar form of Cauchy-Riemann equations and hence deduce that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$. 6

b) If $f(z) = u + iv$ is an analytic function of z , find $f(z)$ if $u - v = x^3 + 3x^2y - 3xy^2 - y^3$. 7

c) Discuss the transformation $w = z^2$. 7

OR

6 a) Find the orthogonal trajectories of the family of curves $x^3y - xy^3 = c$ where c is a constant. 6

b) If $f(z)$ is a holomorphic function of z , show that 7

$$\left\{ \frac{\partial}{\partial x} |f(z)| \right\}^2 + \left\{ \frac{\partial}{\partial y} |f(z)| \right\}^2 = |f'(z)|^2$$

c) Find the bilinear transformation which maps the points $z_1 = 0, z_2 = -i, z_3 = -1$ onto the points $w_1 = i, w_2 = 1, w_3 = 0$. 7

UNIT - V

7 a) State and prove Cauchy's theorem. 6

b) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ as a Laurent's series in the region 7

i) $1 < |z| < 3$ ii) $0 < |z+1| < 2$

c) Evaluate $\int_C \frac{\sin(\pi z^2) + \cos(\pi z^2)}{(z-1)(z-2)} dz$ where C is the circle $|z| = 3$. 7
