

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: CS cluster except AIML

Course Code: 23MA4BSLAO

Course: Linear Algebra and Optimization

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

UNIT – 1						CO	PO	Marks
1	a)	Find the gradient of matrix $f = \begin{bmatrix} \sin(x_0 + 2x_1) & 2x_1 + x_3 \\ 2x_0 + x_2 & \cos(2x_2 + x_3) \end{bmatrix}$ with respect to the matrix $x = \begin{bmatrix} x_0 & x_1 \\ x_2 & x_3 \end{bmatrix}$ and hence verify $\frac{\partial [\text{Trace}(f(x))]}{\partial x} = \text{Trace}\left(\frac{\partial f(x)}{\partial x}\right)$.	1	1	6			
	b)	Given $f(x, y, z) = -x^3 + 3xz + 2y - y^2 - 3z^2$, i) find all the stationary points of the function, ii) find the Hessian matrix and iii) classify the stationary points and find its extreme value.	1	1	7			
	c)	Show that $S = \{(x_1, x_2, x_3) : x_1^2 + x_2^2 + x_3^2 \leq 1\}$ is a convex set.	1	1	7			
OR								
2	a)	Obtain the gradient of the matrix $\begin{bmatrix} xy & yz & zw \\ wx & wy & wz \end{bmatrix}$ with respect to $\begin{bmatrix} x & y \\ z & w \end{bmatrix}$ and hence verify $\frac{\partial(f(X))^T}{\partial X} = \left(\frac{\partial f(X)}{\partial X}\right)^T$.	1	1	6			
	b)	Given $f(x, y, z) = x^2 + y^2 + z^2 - 2xy + 2yx - 2zy$, i) find all the stationary points of the function, ii) find the Hessian matrix and iii) classify the stationary points and find its extreme value.	1	1	7			
	c)	Let $A = \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\}$, $B = \left\{ \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$, and $\mathbf{n} = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$. Find a hyperplane H with normal \mathbf{n} that separates A and B .	1	1	7			
UNIT – 2								
3	a)	Apply Newton's method to find the minimum value of the function $f = 4x_1^2 + x_2^2 - 2x_1x_2$ near $(1, 1)$.	1	1	6			
	b)	Apply Fibonacci search algorithm to minimize $f(x) = x[x - 1.5]$ in $[0, 1]$ within the interval of uncertainty 0.25 of the initial interval of uncertainty.	1	1	7			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Derive the KKT conditions to minimize the function $f(x, y) = xy$ subject to the constraints $x + y^2 \leq 2$ and $x, y \geq 0$. Also find the optimum values of the function.	1	1	7
		OR			
4	a)	Approximate the minimum point of the function $f(x, y) = 4x^2 - 8xy + 6y^2$ near $(1,1)$ using Gradient descent/ascent method. Perform three iterations.	1	1	6
	b)	An asteroid is entering the atmosphere of moon. The shape of the asteroid is described by the equation $4x^2 + y^2 + 4z^2 = 16$. The temperature on the surface of the asteroid after one month was observed to be represented by equation $8x^2 + 4yz - 16z + 600$. Is it possible to find the point on surface of asteroid with maximum temperature? If yes, find it?	1	1	7
	c)	Derive the KKT conditions to maximize $-(x - 2)^2 - 2(y - 1)^2$ subject to $x + 4y \leq 3$ and $x \geq y$.	1	1	7
		UNIT - 3			
5	a)	Consider $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 4 \\ 1 & 4 & 6 \end{bmatrix}$ and the vectors $u = \begin{bmatrix} 1 \\ \alpha \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$. The inner product is defined as $\langle u, v \rangle = u^T A v$. Find the value of α if it is known that the vectors u and v are orthogonal and hence find the length of u with respect to the given inner product.	1	1	6
	b)	Solve the system of equations $AX = B$ where $A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 7 \\ 3 \\ 1 \end{bmatrix}$ by QR factorization method.	1	1	7
	c)	Fit a parabola of the form $y = a + bx$ for the data $(1, 1)$, $(2, 4)$, $(3, 7)$ and $(4, 5)$ using the method of least squares.	1	1	7
		OR			
6	a)	Find the angle between the vectors $A = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ where $\langle A, B \rangle = \text{Tr}(B^T A)$.	1	1	6
	b)	Let $P_2(t)$ be the vector space of polynomials of degree ≤ 2 with $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Find a basis of the subspace W orthogonal to $h(t) = 2t + 1$.	1	1	7
	c)	Apply the Gram-Schmidt orthogonalization to find the orthonormal basis of the subspace $W \subseteq \mathbb{R}^3$ spanned by the vectors $v_1 = (1, -1, 1)$, $v_2 = (1, 2, 3)$ and $v_3 = (5, 6, 7)$.	1	1	7

	10	a)	Determine the modal matrix that reduces the quadratic form $x^2 + 5y^2 + z^2 + 2xy + 6xz + 2yz$ to its canonical form and hence discuss the nature the quadratic form.	1	1	10
		b)	Reduce the dimension from two to one using principal component analysis for the following data:	1	1	10

B.M.S.C.E. - ODD SEM 2024-25