

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: CS cluster except AIML

Course Code: 23MA4BSLAO

Course: Linear Algebra and Optimization

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Find the gradient of matrix $f = \begin{bmatrix} x_0^2 x_1 \log(x_2) & \frac{x_1^2 x_2}{x_3} \\ x_3^2 + x_1 x_3 & x_2^3 + x_1 \end{bmatrix}$ with respect to the matrix $x = \begin{bmatrix} x_0 & x_1 \\ x_2 & x_3 \end{bmatrix}$ and hence verify $\frac{\partial [\text{Trace}(f(x))]}{\partial x} = \text{Trace}\left(\frac{\partial f(x)}{\partial x}\right)$.	1	1	7
	b)	Given $f = x^2 + y^2 + z^2 + xy + yz + zx - 4x - 4y - 4z - 5$, i) find all the stationary points of the function, ii) find the Hessian matrix and iii) classify the stationary points and find its extreme value.	1	1	7
	c)	Find the equation of hyperplane normal to the vector $n = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$ that separates the sets $A = \left\{ \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 6 \\ 0 \end{bmatrix} \right\}$ and $B = \left\{ \begin{bmatrix} 0 \\ 5 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \right\}$. Does this hyperplane strictly separate these sets?	1	1	6
UNIT - 2					
2	a)	Apply Newtons method to find the minimum value of the function $f = 4x_1^2 + x_2^2 - 2x_1x_2 + x_1 + x_2$ near $(1, 1)$. Carry out two iterations.	1	1	6
	b)	An asteroid is entering the atmosphere of moon. The shape of the asteroid is described by the equation $4x^2 + y^2 + 4z^2 = 16$. The temperature on the surface of the asteroid after one month was observed to be represented by equation $8x^2 + 4yz - 16z + 600$. Is it possible to find the point on surface of asteroid with maximum temperature? If yes, find it?	1	1	6
	c)	Derive the KKT conditions to minimize the function $f(x, y) = xy$ subject to the constraints $x + y^2 \leq 2$ and $x, y \geq 0$. Also find the optimum values of the function.	1	1	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT – 3																			
3	a)	If $u = (1, 3, -4, 2)$, $v = (4, -2, 2, 1)$ and $w = (5, -1, -2, 6)$ are vectors in \mathbb{R}^4 then:	1	1	6														
		i) verify the $\langle 3u - 2v, w \rangle = 3\langle u, w \rangle - 2\langle v, w \rangle$ and																	
		ii) find $\frac{\ 3u - 2v\ }{\ w\ }$.																	
	b)	Find an orthogonal basis of the subspace W spanned by the following vectors $S = \{1, t, t^2\}$ of $P_2(t)$ given $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.	1	1	7														
	c)	A sales organization obtains the following data relating the number of salespersons to annual sales.	1	1	7														
		<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td style="padding: 2px;">x: Number of salespersons</td> <td style="padding: 2px;">5</td> <td style="padding: 2px;">6</td> <td style="padding: 2px;">7</td> <td style="padding: 2px;">8</td> <td style="padding: 2px;">9</td> <td style="padding: 2px;">10</td> </tr> <tr> <td style="padding: 2px;">y: Annual Sales (millions of dollars)</td> <td style="padding: 2px;">2.3</td> <td style="padding: 2px;">3.2</td> <td style="padding: 2px;">4.1</td> <td style="padding: 2px;">5.0</td> <td style="padding: 2px;">6.1</td> <td style="padding: 2px;">7.2</td> </tr> </table> Find the least squares line of the form $y = a + bx$ and hence estimate the annual sales when there are 14 salespersons.	x: Number of salespersons	5	6	7	8	9	10	y: Annual Sales (millions of dollars)	2.3	3.2	4.1	5.0	6.1	7.2			
x: Number of salespersons	5	6	7	8	9	10													
y: Annual Sales (millions of dollars)	2.3	3.2	4.1	5.0	6.1	7.2													
	OR																		
4	a)	Find the value of α such that the matrices $A = \begin{bmatrix} \alpha & 8 & -7 \\ 6 & 5\alpha & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6\alpha \end{bmatrix}$ are orthogonal with respect to an inner product $\langle A, B \rangle = \text{Tr}(B^T A)$. Hence find $\ A\ $ and $\ B\ $.	1	1	6														
	b)	Show that $S = \{u_1, u_2, u_3, u_4\}$ where $u_1 = (1, 1, 1, 1)$, $u_2 = (1, 1, -1, -1)$, $u_3 = (1, -1, 1, -1)$, $u_4 = (1, -1, -1, 1)$ is orthogonal and a basis of \mathbb{R}^4 . Find the coordinates of the arbitrary vector $v = (a, b, c, d)$ in \mathbb{R}^4 relative to the basis S .	1	1	7														
	c)	Obtain the QR factorization of the following matrix $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 1 \end{bmatrix}$.	1	1	7														
	UNIT - 4																		
5	a)	Apply Cayley-Hamilton theorem to find A^4 given $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$.	1	1	6														
	b)	Given $M = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ and eigenvalues of M are $\lambda = 0, 2$. Find the eigenvalues and the eigenspace corresponding to each eigenvalue of $A = M^2 + \frac{1}{2}M$. Hence determine whether A is defective matrix or not.	1	1	7														
	c)	Determine all possible Jordan canonical forms or blocks of linear transformation T with characteristic polynomial $f(t) = (t-4)^3$ and specify the geometric multiplicity in each case.	1	1	7														

		OR													
6	a)	Determine the inverse of the matrix $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ by using Cayley-Hamilton theorem.	1	1	6										
	b)	Find an eigenspace of the linear transformation $T: P_2(t) \rightarrow P_2(t)$ given by $T(at^2 + bt + c) = (a+3b+3c)t^2 - (3a+5b+3c)t + (3a+3b+c)$.	1	1	7										
	c)	Find the characteristic and minimal polynomial of the matrix $A = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}$.	1	1	7										
		UNIT - 5													
7	a)	Find the nature and write the canonical form of the quadratic form $3x^2 + 3y^2 + 3z^2 + 2xy + 2xz - 2yz$.	1	1	5										
	b)	Assume that the USN is XYZ2222 and then construct a matrix A of size 2×2 by taking last four digits of the USN given and hence find the singular value decomposition. Also write comment on the dimension reduction.	1	1	8										
	c)	Apply principal component analysis to given data to reduce from two-dimension to 1-dimension: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x</td><td>4</td><td>8</td><td>13</td><td>7</td></tr> <tr> <td>y</td><td>11</td><td>4</td><td>5</td><td>14</td></tr> </table>	x	4	8	13	7	y	11	4	5	14	1	1	7
x	4	8	13	7											
y	11	4	5	14											
