

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E

Branch: CS/IS/AIML

Course Code: 19MA4BSLIA

Course: Linear Algebra

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Date: 14.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Apply LU decomposition method to solve the system of equations $2x+y+4z=12$, $4x+11y-z=33$ and $8x-3y+2z=20$. 6

b) Express the polynomial $v = t^2 + 4t - 3$ in $p(t)$ as a linear combination of the polynomials $p_1 = t^2 - 2t + 5$, $p_2 = 2t^2 - 3t$, $p_3 = t + 3$. 7

c) Let W be a subspace of \mathbb{R}^4 spanned by the vectors $u_1 = (1, -2, 5, -3)$, $u_2 = (2, 3, 1, -4)$ and $u_3 = (3, 8, -3, -5)$.
 i) Find the basis and dimension of W .
 ii) Extend the basis of W to a basis of \mathbb{R}^4 . 7

OR

2 a) Show that the vectors $u_1 = (1, 1, 1)$, $u_2 = (1, 2, 3)$, $u_3 = (1, 5, 8)$ span \mathbb{R}^3 . 6

b) Show that the set $V = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a vector space over the field of rationals. 7

c) Find the dimension and a basis of the solution space W of the system of equations $x + 2y + 2z - s + 3t = 0$; $x + 2y + 3z + s + t = 0$ and $3x + 6y + 8z + s + 5t = 0$. 7

UNIT- II

3 a) If $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(x, y, z) = (x - y, y + z, x + z)$, find $R(T)$, $N(T)$ and hence verify Rank-Nullity theorem. 6

b) Let T be a linear operator defined on \mathbb{R}^3 through $T(x, y, z) = (2x + 3y - z, 4y - z, 2z)$. Is T invertible? If so, then find a formula for T^{-1} . 7

c) Find the matrix of linear transformation $T : V_2(\mathbb{R}) \rightarrow V_3(\mathbb{R})$ defined by $T(x, y) = (-x + 2y, y, -3x + 3y)$ relative to the basis $B_1 = \{(1, 1), (-1, 1)\}$ and $B_2 = \{(1, 1, 1), (1, -1, 1), (0, 0, 1)\}$. 7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT- III

4 a) Find A^4 given $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ using Cayley-Hamilton theorem. 6

b) Find the eigen space of the linear transformation $T : R^3 \rightarrow R^3$ defined by $T(x, y, z) = (3x+2y+z, x+4y+z, 2y+4z)$. 7

c) Determine all possible Jordan canonical forms of the linear operator $T : V \rightarrow V$ whose characteristic polynomial is $\Delta(t) = (t-2)^3(t-5)^2$. 7

OR

5 a) Find the characteristic and minimal polynomial of $A = \begin{bmatrix} 3 & 2 & 0 & 0 & 0 \\ 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$. 6

b) Find eigenvalues and eigenvectors of the linear transformation $T : V_2(\mathbb{R}) \rightarrow V_2(\mathbb{R})$ defined by $T(x, y) = (2x+5y, 4x+3y)$. 7

c) Express the initial-value problem $\frac{d^2x(t)}{dt^2} - 2\frac{dx(t)}{dt} - 3x(t) = 0$ subjected to $x(0) = 4, \frac{dx(0)}{dt} = 5$ into fundamental form and hence solve. 7

UNIT- IV

6 a) Let W be a subspace of \mathbb{R}^5 spanned by $u = (1, 2, 3, -1, 2)$ and $v = (2, 4, 7, 2, -1)$. Find a basis of the orthogonal compliment W^\perp of W . 6

b) Find an orthogonal basis and hence an orthonormal basis of U , the subspace of \mathbb{R}^4 spanned by the vectors $v_1 = (1, 1, 1, 1)$, $v_2 = (1, 1, 2, 4)$ and $v_3 = (1, 2, -4, -3)$ using Gram-Schmidt orthogonalization process. 7

c) Obtain the QR factorization of $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. 7

UNIT- V

7 a) Orthogonally diagonalize $\begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$. 10

b) Find a singular value decomposition of $\begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$. 10
