

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2023 Semester End Main Examinations

Programme: B.E.

Branch: CSE/ISE

Course Code: 19MA4BSLIA

Course: Linear Algebra

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Solve the system of equations $x + 2y + 3z = 14$, $4x + 5y + 7z = 35$ and $3x + 3y + 4z = 21$ for complete solution. Also mention the free variables and the pivot variables.	<i>CO1</i>	<i>PO1</i>
		b)	Solve the system of equations $x + y + z = 1$, $3x + y - 3z = 5$ and $x - 2y - 5z = 10$ by LU-Decomposition method.	<i>CO1</i>	<i>PO1</i>
		c)	Find the basis and dimension for Column space and Row space of the matrix $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$.	<i>CO1</i>	<i>PO1</i>
OR					
	2	a)	Solve the system of equations $u + 3v + 3w + 2y = 1$, $2u + 6v + 9w + 7y = 5$ and $-u - 3v + 3w + 4y = 5$ for the complete solution.	<i>CO1</i>	<i>PO1</i>
		b)	Solve the system of equations $x + y + z = 9$, $2x + 5y + 7z = 52$ and $2x + y - z = 0$ by Gauss elimination method.	<i>CO1</i>	<i>PO1</i>
		c)	Check linearly dependency or linearly independency of following set of vectors. i) $A = \{(1, -3, 2), (2, 1, -3), (-3, 2, 1)\}$ and ii) $B = \{(2, 1, 3), (1, 3, 2), (3, 2, 1)\}$.	<i>CO1</i>	<i>PO1</i>
UNIT - II					
	3	a)	Find the matrix representation of linear transformation $T: R^2 \rightarrow R^2$ defined by $T(x, y) = (2x + 3y, 4x - 5y)$ relative to $\{(1, 2), (2, 5)\}$ for both vector space in domain and codomain.	<i>CO1</i>	<i>PO1</i>
		b)	If $T: R^2 \rightarrow R^3$ is defined by $T(x, y) = (x, y, x + y)$. Show that T is linear transformation and also find its kernel.	<i>CO1</i>	<i>PO1</i>
		c)	Show that the linear transformation $T: R^2 \rightarrow R^2$ defined as $T(x, y) = (3x - 5y, -3x - 6y)$ is invertible and find T^{-1} .	<i>CO1</i>	<i>PO1</i>

UNIT – III					
4	a)	Find all the eigenvalues and corresponding eigenvectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.	CO2	PO1	7
	b)	Diagonalize the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ and hence find A^4 .	CO2	PO1	7
	c)	Find minimal polynomial and characteristic polynomial of the matrix $A = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix}$.	CO2	PO1	6
	OR				
5	a)	Compute the eigenspace of the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by the matrix $A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$.	CO2	PO1	7
	b)	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ also compute A^{-1} and A^4 .	CO2	PO1	7
	c)	Write the Jordan canonical form of matrix whose characteristic and minimal polynomial are respectively $(x - 1)^3(x - 2)^2$ and $(x - 1)^2(x - 2)$.	CO2	PO1	6
	UNIT – IV				
6	a)	Apply Gram-Schmidt orthogonalization to construct the orthonormal basis of the vector space spanned by the vectors $(1, 0, 1), (1, 0, 0), (2, 1, 0)$.	CO3	PO1	7
	b)	Find QR decomposition of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.	CO3	PO1	7
	c)	Find the least square solution of the system of equations $-x + 2y = 3, x + y = 4, x - 2y = 0$ and $3x + 2y = 2$.	CO3	PO1	7
	UNIT – IV				
7	a)	Determine the orthogonal modal matrix and hence diagonalize the matrix $\begin{bmatrix} 1 & 5 & -2 \\ 5 & 4 & 5 \\ -2 & 5 & 1 \end{bmatrix}$.	CO3	PO1	8
	b)	Obtain the canonical form and hence classify the nature of the quadratic form $7x^2 + 6y^2 + 5z^2 - 4xy - 4yz$.	CO3	PO1	4
	c)	Find singular value decomposition of the matrix $A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$.	CO3	PO1	8
