

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Branch: CS, IS and AI&ML

Course Code: 22MA4BSLIA

Course: Linear Algebra

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks
1	a)	<p>Show that the set $M = \left\{ \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} \mid a, b \in \mathbb{R} \right\} \subset M_{2 \times 2}$ satisfies all the properties of a vector space over the field of reals under standard matrix addition and scalar multiplication.</p>	<i>CO1</i>	<i>PO1</i>	6	
	b)	<p>Does there exist non-zero scalars c_1, c_2, c_3 and c_4 which proves that the vectors $v_1 = (0, 1, 2, 3, 0)$, $v_2 = (1, 3, -1, 2, 1)$, $v_3 = (2, 6, -1, -3, 1)$ and $v_4 = (4, 0, 1, 0, 2)$ in \mathbb{R}^5 are linearly dependent? If yes, find them.</p>	<i>CO1</i>	<i>PO1</i>	7	
	c)	<p>Determine a subset of $S = \{p_1, p_2, p_3, p_4\} \subset P_3(t)$, the vector space of polynomials that forms a basis of $W = \text{span}(S)$ if $p_1 = t^3 + t^2$, $p_2 = 2t^3 + 2t - 2$, $p_3 = t^3 - 6t^2 + 3t - 3$ and $3t^2 - t + 1$.</p>	<i>CO1</i>	<i>PO1</i>	7	
			UNIT - II			
2	a)	<p>Consider the matrix $A = \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$ which defines a linear operator on \mathbb{R}^2. Find the matrix of the linear transformation relative to the basis $S = \{u_1, u_2\} = \{(1, -2), (3, -7)\}$.</p>	<i>CO1</i>	<i>PO1</i>	6	
	b)	<p>Find the basis for the range space $R(T)$, null space $N(T)$ for the linear transformation $T: \mathbb{R}^4 \rightarrow \mathbb{R}^3$ given by $T(x, y, z, t) = (x - y + z + t, x + 2z + t, x + y + 3z - 3t)$ and also verify rank-nullity theorem.</p>	<i>CO1</i>	<i>PO1</i>	7	
	c)	<p>Let $G: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ given by $G(x, y, z) = (x + y, x + z, y + z)$. (i) Show that G is invertible. (ii) Find G^{-1}.</p>	<i>CO1</i>	<i>PO1</i>	7	
			OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	3	a)	<p>Let $A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$, $u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$ and $c = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$. Define a linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ by $T(X) = AX$, for $X \in \mathbb{R}^2$.</p> <p>(i) Find the image of u under the transformation T.</p> <p>(ii) Find an $X \in \mathbb{R}^2$ whose image is b. Is there more than one $X \in \mathbb{R}^2$ whose image is b?</p> <p>(iii) Determine if c is in the range of the transformation.</p>	COI	POI	6	
		b)	<p>Derive the matrix of the linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$, which results in horizontal shear of $(x, y) \in \mathbb{R}^2$ by 0.5 units.</p> <p>Determine if there exist i) a preimage of $(1, -3)$. ii) an image of $(3, -1)$.</p>	COI	POI	7	
		c)	<p>Find the basis for the range space $R(T)$ and the Kernel $N(T)$ of the linear transformation $T: \mathbb{R}^4 \rightarrow \mathbb{R}^3$ given by the matrix</p> $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$ <p>Hence verify the rank-nullity theorem. Is T a one-one mapping? Justify.</p>	COI	POI	7	
			UNIT - III				
	4	a)	<p>Apply Cayley-Hamilton theorem to compute A^{-1} of</p> $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$	COI	POI	6	
		b)	<p>Find the eigenvalues and the eigenvectors of the linear transformation $T: P_1(t) \rightarrow P_1(t)$ defined</p> $T(at+b) = (a+2b)t + (4a+3b)$	COI	POI	7	
		c)	<p>Find the characteristic and minimal polynomial of</p> $\begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & -7 \end{bmatrix}$	COI	POI	7	
			OR				
	5	a)	<p>Apply Cayley-Hamilton theorem to compute A^4 if</p> $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$	COI	POI	6	
		b)	<p>Determine the eigenspaces of the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(x, y, z) = (x+y-z, 0, x+2y+3z)$.</p>	COI	POI	7	

	c)	Write all possible Jordan canonical form of the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ when $\Delta(t) = (t+5)^2(t-7)^3$ is the characteristic polynomial.	COI	POI	7														
		UNIT - IV																	
6	a)	Find a basis of W of \mathbb{R}^4 orthogonal to $u_1 = (1, -2, 3, 4)$ and $u_2 = (3, -5, 7, 8)$.	COI	POI	4														
	b)	Find an orthogonal basis and hence an orthonormal basis of the subspace W spanned by $S = \{1, 1-t, t^2\}$ of $P_2(t)$ given $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.	COI	POI	9														
	c)	<p>In an experiment designed to determine the extent of a person's natural orientation, a subject is put in a special room and kept there for a certain length of time. He is then asked to find a way of a maze and record is made of the time it takes the subject to accomplish this task. The following data are obtained.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Time in Room (hours)</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> </tr> <tr> <td>Time to find way out of maze(minutes)</td> <td>0.8</td> <td>2.1</td> <td>2.6</td> <td>2.0</td> <td>3.1</td> <td>3.3</td> </tr> </table> <p>Let x denote the number of hours in the room and let y denote the number of minutes that it takes the subject to find his way out.</p> <p>i. Find the least squares line of the form $y = a + bx$.</p> <p>ii. Estimate the time it will take the subject to find his way out of the maze after 10 hours in the room using the equation obtained.</p>	Time in Room (hours)	1	2	3	4	5	6	Time to find way out of maze(minutes)	0.8	2.1	2.6	2.0	3.1	3.3	COI	POI	7
Time in Room (hours)	1	2	3	4	5	6													
Time to find way out of maze(minutes)	0.8	2.1	2.6	2.0	3.1	3.3													
		UNIT - V																	
7	a)	Determine the modal matrix that reduces the quadratic form $x^2 + 3y^2 + 3z^2 - 2yz$ to its canonical form and hence discuss the nature the quadratic form.	COI	POI	10														
	b)	Obtain the singular value decomposition of $A = \begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix}$.	COI	POI	10														
