

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Branch: CS / IS / AI and ML

Course Code: 22MA4BSLIA

Course: Linear Algebra

Semester:

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Determine whether or not W is a subspace of \mathbb{R}^3 where W consists of all vectors of the form (a,b,c) in \mathbb{R}^3 such that: i. $a+b+c=0$, ii. $a^2+b^2+c^2 \leq 1$.	1	1	6
	b)	Express $M = \begin{bmatrix} 4 & 7 \\ 7 & 9 \end{bmatrix}$ as a linear combination of $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \\ 4 & 5 \end{bmatrix}$.	1	1	7
	c)	Determine a subset of $S = \{u_1, u_2, u_3, u_4\}$ that gives a basis for $W = \text{span}(u_i)$ of \mathbb{R}^5 where $u_1 = (1, -2, 1, 3, -1)$, $u_2 = (-2, 4, -2, -6, 2)$, $u_3 = (1, -3, 1, 2, 1)$ and $u_4 = (3, -7, 3, 8, -1)$.	1	1	7
OR					
2	a)	Let \mathbb{R}^+ be the set of all positive real numbers. Define vector addition as $u+v=uv$, $\forall u, v \in \mathbb{R}^+$ and scalar multiplication $k.u=u^k \forall k \in \mathbb{R}$. Show that \mathbb{R}^+ is a vector space over the field of real numbers.	1	1	6
	b)	Find the basis and dimension of the row space, and column space of the matrix $\begin{bmatrix} 0 & 0 & 3 & 1 & 4 \\ 1 & 3 & 1 & 2 & 1 \\ 3 & 9 & 4 & 5 & 2 \\ 4 & 12 & 8 & 8 & 7 \end{bmatrix}$.	1	1	7
	c)	The vectors $u_1 = (1, 2, 0)$ and $u_2 = (1, 3, 2)$ and $u_3 = (0, 1, 3)$ form a basis S of \mathbb{R}^3 . Find the coordinate vector $[v]_S$ of $v = (2, 7, -4)$ relative to S .	1	1	7
UNIT - 2					
3	a)	Find the linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ such that $T(-1, 0) = (-1, 0, 2)$ and $T(2, 1) = (1, 2, 1)$.	1	1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Find the basis of the range space $R(T)$, null space $N(T)$ for the linear transformation $T: \mathbb{R}^5 \rightarrow \mathbb{R}^4$ given by $T = \begin{bmatrix} 2 & -1 & 1 & -6 & 8 \\ 1 & -2 & -4 & 3 & -2 \\ -7 & 8 & 10 & 3 & -10 \\ 4 & -5 & -7 & 0 & 4 \end{bmatrix}$</p> <p>and also verify rank-nullity theorem.</p>	1	1	7
	c)	<p>Let $G: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ given by $G(x, y, z) = (y+z, x+z, x+y)$.</p> <p>(i) Show that G is invertible. (ii) Find G^{-1}.</p>	1	1	7
		OR			
4	a)	<p>The linear transformation $L: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ is given by $L(x, y, z) = (x+z, y+z, x+2y+2z)$. Determine whether the vector $u = (2, -1, 3)$ is in the range of L.</p>	1	1	6
	b)	<p>Find the matrix of linear transformation $T: V_2(\mathbb{R}) \rightarrow V_2(\mathbb{R})$ defined by $T(x, y) = (2x+3y, 4x-5y)$ with respect to basis $S = \{(1, 2), (2, 5)\}$.</p>	1	1	7
	c)	<p>Find the basis for the range space $R(T)$ and the kernel $N(T)$ of the linear transformation $T: \mathbb{R}^4 \rightarrow \mathbb{R}^3$ given by the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$. Hence verify the rank-nullity theorem.</p>	1	1	7
		UNIT - 3			
5	a)	<p>Apply Cayley-Hamilton theorem to compute A^4 if $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$.</p>	1	1	6
	b)	<p>Find the eigenspace of the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ given by $T(x, y, z) = (3x+2y+z, x+4y+z, x+2y+3z)$.</p>	1	1	7
	c)	<p>Find the characteristic and minimal polynomial of $A = \begin{bmatrix} 4 & -1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$.</p>	1	1	7
		OR			
6	a)	<p>Apply Cayley-Hamilton theorem to find A^{-1} if $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$.</p>	1	1	6
	b)	<p>Determine the eigenspaces of the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$.</p>	1	1	7
	c)	<p>Write all possible Jordan canonical form of the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ when $\Delta(t) = (t-5)^2(t-7)^3$ is the characteristic polynomial.</p>	1	1	7

		UNIT - 4																	
7	a)	Find the angle between the vectors $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 2 & -2 \\ -3 & 5 \end{bmatrix}$ where $\langle A, B \rangle = \text{Tr}(B^T A)$.	1	1	4														
	b)	Obtain the QR decomposition of the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -3 & 3 \\ -1 & 2 & 4 \end{bmatrix}$.	1	1	8														
	c)	A sales organization obtains the following data relating the number of salespersons to annual sales. <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>Number of salespersons</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td><td>10</td></tr><tr><td>Annual Sales (millions of dollars)</td><td>2.3</td><td>3.2</td><td>4.1</td><td>5.0</td><td>6.1</td><td>7.2</td></tr></table> Let x denote the number of salespersons and y denote the annual sales (in millions of dollars). Find the least squares line of the form $y = a + bx$.	Number of salespersons	5	6	7	8	9	10	Annual Sales (millions of dollars)	2.3	3.2	4.1	5.0	6.1	7.2	2	1	8
Number of salespersons	5	6	7	8	9	10													
Annual Sales (millions of dollars)	2.3	3.2	4.1	5.0	6.1	7.2													
		OR																	
8	a)	If $P_2(t)$ is the vector space of polynomials of degree ≤ 2 with $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Find a basis of the subspace W orthogonal to $h(t) = 2t + 1$.	1	1	6														
	b)	Show that $S = \{(1, 1, 0, -1), (1, 2, 1, 3), (1, 1, -9, 2), (16, -13, 1, 3)\}$ is orthogonal basis of \mathbb{R}^4 . Hence Find the coordinates of the vector $v = (1, 1, -1, 1)$ in \mathbb{R}^4 relative the basis S .	1	1	7														
	c)	Find an orthogonal matrix P whose first row is $u_1 = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3} \right)$.	1	1	7														
		UNIT - 5																	
9	a)	Determine the modal matrix that reduces the quadratic form $x^2 + 5y^2 + z^2 + 2xy + 6xz + 2yz$ to its canonical form and hence discuss the nature the quadratic form.	2	1	10														
	b)	Reduce the dimension from two to one using principal component analysis for the following data: <table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>x</td><td>4</td><td>8</td><td>13</td><td>7</td></tr><tr><td>y</td><td>11</td><td>4</td><td>5</td><td>14</td></tr></table>	x	4	8	13	7	y	11	4	5	14	2	1	10				
x	4	8	13	7															
y	11	4	5	14															
		OR																	
10	a)	Orthogonally diagonalize $A = \begin{bmatrix} 2 & 2 & 4 \\ 2 & 5 & 8 \\ 4 & 8 & 17 \end{bmatrix}$.	1	1	10														
	b)	Determine a singular value decomposition of $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$.	1	1	10														
