

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: CS / IS / AIML

Duration: 3 hrs.

Course Code: 22MA4BSLIA

Max Marks: 100

Course: LINEAR ALGEBRA

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Check whether $b = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$ can be expressed as a linear combination of the columns of $A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix}$.	1	1	6
	b)	Let $v_1 = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$, $v_2 = \begin{bmatrix} 6 \\ 2 \\ -1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$ and $v_4 = \begin{bmatrix} -4 \\ -8 \\ 9 \end{bmatrix}$. Find a basis for the subspace W spanned by $\{v_1, v_2, v_3, v_4\}$.	1	1	7
	c)	Given $B = \{t^3 + t^2, t^2 + t, t + 1, 1\}$ is an ordered basis of vector space $P_3(t)$. Find the co-ordinate vector of $f(t)$ relative to B where $f(t) = 2t^3 + t^2 - 4t + 2$.	1	1	7
UNIT - 2					
2	a)	Find the matrix of the linear transformation $T: V_2(R) \rightarrow V_3(R)$ defined by $T(x, y) = (x + y, x, 3x - y)$ with respect to $B_1 = \{(1, 1), (3, 1)\}$ and $B_2 = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$.	1	1	6
	b)	Find the basis and dimension of the Image and Kernel of the linear transformation $F: R^4 \rightarrow R^3$ defined by $F(x, y, z, t) = (x - y + z + t, 2x - 2y + 3z + 4t, 3x - 3y + 4z + 5t)$.	1	1	7
	c)	Verify rank-nullity theorem for the linear transformation defined by the matrix $A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 3 & 4 & -1 & 2 \\ -1 & -2 & 5 & 4 \end{bmatrix}$.	1	1	7
OR					
3	a)	Find the linear transformation $T: V_3(R) \rightarrow V_4(R)$ which maps $T(1, 0, 0) = (0, 1, 0, 2)$, $T(0, 1, 0) = (0, 1, 1, 0)$ and $T(0, 0, 1) = (0, 1, -1, 4)$.	1	1	6
	b)	Show that $T: P_1(t) \rightarrow P_3(t)$ is a linear transformation if $T(at + b) = at^3 + bt^2 + at + b$ and hence find the image of $p(t) = 2 - t$.	1	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Determine the basis and dimension of the null space of the linear transformation defined by $A = \begin{bmatrix} 1 & 4 & -1 & 3 \\ 2 & 9 & -1 & 7 \\ 2 & 8 & -2 & 6 \end{bmatrix}$.	1	1	7
UNIT - 3					
4	a)	Find the eigenvalues and the corresponding eigenspaces of the linear operator $A = \begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$.	1	1	6
	b)	Find the characteristic and minimal polynomial of the matrix $A = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 2 & 0 \\ 0 & 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{bmatrix}$.	1	1	7
	c)	Determine the Jordan canonical form for the matrix $\begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 2 & -4 \end{bmatrix}$.	1	1	7
OR					
5	a)	Find the eigenvalue and the corresponding eigenvectors of the linear transformation $T: V_2(R) \rightarrow V_2(R)$, given $A = \begin{pmatrix} 3 & 3 \\ 1 & 5 \end{pmatrix}$.	1	1	6
	b)	Apply Cayley-Hamilton theorem to find A^{-1} if $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$.	1	1	7
	c)	Compute the Jordan canonical form for the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{bmatrix}$.	1	1	7
UNIT - 4					
6	a)	Find the projection of $(1, 2, 3)$ on to the subspace W spanned by $S = \{u_1, u_2\}$ where $u_1 = (2, 5, -1)$ and $u_2 = (-2, 1, 1)$.	1	1	5
	b)	Find the equation of line that will be best approximation of the points $(-3, 70), (1, 21), (-7, 110)$ and $(5, -35)$ using the method of least squares.	2	1	7
	c)	Determine the QR-decomposition of the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 3 \\ 1 & -1 & 4 \end{bmatrix}$.	2	1	8
UNIT- 5					
7	a)	Orthogonally diagonalize the matrix $A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$.	2	1	10
	b)	Find the singular value decomposition of $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$.	2	1	10
