

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: CSE / ISE / AI and ML

Course Code: 19MA4BSLIA

Course: Linear Algebra

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

UNIT - I				CO	PO	Marks	
1	a)	Apply LU decomposition method to solve the system of equation $2x + y + 4z = 12$, $4x + 11y - z = 33$ and $8x - 3y + 2z = 20$.		1	1	6	
	b)	Express the polynomial $v = t^2 + 4t - 3$ in $p(t)$ as a linear combination of the polynomials $p_1 = t^2 - 2t + 5$, $p_2 = 2t^2 - 3t$ and $p_3 = t + 3$.		1	1	7	
	c)	Let W be a subspace of \mathbb{R}^4 spanned by the vectors $u_1 = (1, -2, 5, -3)$, $u_2 = (2, 3, 1, -4)$ and $u_3 = (3, 8, -3, -5)$. (i) Find the basis and dimension of W . (ii) Extend the basis of W to a basis of \mathbb{R}^4 .		1	1	7	
OR							
2	a)	Apply Gauss elimination method to solve the system of equation $20x + y - 2z = 17$, $3x + 20y - z = -18$ and $2x - 3y + 20z = 25$.		1	1	6	
	b)	Show that the vectors $u_1 = (1, 1, 1)$, $u_2 = (1, 2, 3)$, $u_3 = (1, 5, 8)$ span \mathbb{R}^3 .		1	1	7	
	c)	Find the dimension and a basis of the solution space W of the system of equations $x + 2y + 2z - s + 3t = 0$; $x + 2y + 3z + s + t = 0$ and $3x + 6y + 8z + s + 5t = 0$.		1	1	7	
UNIT-II							
3	a)	If $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(x, y, z) = (x - y, y + z, x + z)$, find $N(T)$ and $R(T)$ and verify rank nullity theorem.		1	1	6	
	b)	Consider T , a linear operator on \mathbb{R}^3 defined by $T(x, y, z) = (2x + 3y - z, 4y - z, 2z)$. Is T invertible? If so, then find a formula for T^{-1} .		1	1	7	
	c)	Find the matrix of linear transformation $T: V_2(\mathbb{R}) \rightarrow V_3(\mathbb{R})$ defined by $T(x, y) = (-x + 2y, y, -3x + 3y)$ relative to the bases $B_1 = \{(1, 1), (-1, 1)\}$ and $B_2 = \{(1, 1, 1), (1, -1, 1), (0, 0, 1)\}$.		1	1	7	
		OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

4	a)	Find the matrix representation with respect to basis $\{(1, 2), (0, -3)\}$ for \mathbb{R}^2 and the basis $S = \{(1, 1, 0), (0, 1, 1), (0, 1, -1)\}$ in \mathbb{R}^3 for the linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by $T(a, b) = (4a+b, 3a, 2a-b)$.	1	1	6
	b)	Determine whether or not the linear mapping $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(x, y, z) = (x+2y+3z, 3x+4y+4z, 7x+10y+12z)$ is invertible and hence find T^{-1} if invertible.	1	1	7
	c)	Find the bases for the image space and null space and hence verify Rank-Nullity theorem for the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(x, y, z) = (x+2y-3z, 2x-4y+7z, 2y+z)$.	1	1	7
UNIT - III					
5	a)	Find A^4 given $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ using Cayley-Hamilton theorem.	1	1	6
	b)	Find the eigen space of the linear transformation $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ defined by $T(x, y, z) = (3x+2y+z, x+4y+z, 2y+4z)$	1	1	7
	c)	Determine all possible Jordan canonical forms of the linear operator $T: V \rightarrow V$ whose characteristic polynomial is $\Delta(t) = (t-2)^3(t-5)^2$.	1	1	7
OR					
6	a)	Find the characteristic and minimal polynomial of the matrix $A = \begin{bmatrix} 3 & 2 & 0 & 0 & 0 \\ 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$.	1	1	6
	b)	Find eigenvalues and eigenvectors of the linear transformation $T: V_2(\mathbb{R}) \rightarrow V_2(\mathbb{R})$ defined by $T(x, y) = (2x+5y, 4x+3y)$.	1	1	7
	c)	Write the initial-value problem $\frac{d^2x}{dt^2} - 2\frac{dx}{dt} - 3x(t) = 0$, $x(0) = 4$, $\frac{dx(0)}{dt} = 5$ in its fundamental form and hence solve.	1	1	7
UNIT - IV					
7	a)	Find the projection of the vector $v = t+1$ along $w = t^2 + 3$ in $P(t)$ with respect to $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.	1	1	6
	b)	Find an orthogonal basis and hence an orthonormal basis of the subspaces U of \mathbb{R}^4 spanned by the vectors $(1, 1, 1, 1)$, $(1, 1, 2, 4)$ and $(1, 2, -4, -3)$ using Gram-Schmidt orthogonalization process.	1	1	7

	c)	Find a QR factorization of $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.	1	1	7
OR					
8	a)	Find the angle between the vectors $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 2 & -2 \\ -3 & 5 \end{bmatrix}$ where $\langle A, B \rangle = \text{Tr}(B^T A)$.	1	1	6
	b)	Let W be a subspace of \mathbb{R}^5 spanned by $u = (1, 2, 3, -1, 2)$ and $v = (2, 4, 7, 2, -1)$. Find a basis of the orthogonal complement of W .	1	1	7
	c)	Solve the following system of equations $AX = b$ by the method of least squares $A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 0 & -1 \\ -1 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 3 \\ 1 \\ 2 \\ -1 \end{bmatrix}$.	1	1	7
UNIT-V					
9	a)	Orthogonally diagonalize $\begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$.	1	1	10
	b)	Find the singular value decomposition of $\begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$.	1	1	10
OR					
10	a)	Find the modal matrix P such that the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ is diagonalizable and hence find A^4 .	1	1	10
	b)	Find the matrix of transformation which reduces the quadratic form $3x^2 + 3y^2 + 3z^2 + 2xy + 2xz - 2yz$ in to its canonical form. Also write its nature and canonical form.	1	1	10
