

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: CS / IS / AI and ML

Course Code: 22MA4BSLIA

Course: Linear Algebra

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. All questions have internal choices.

2. Missing data, if any, may be suitably assumed.

			UNIT - 1	CO	PO	Marks
1	a)	Determine whether the set $V = \{(x, y) \mid x, y \in \mathbb{R}\}$ is a vector space over the field of reals when the vector addition is the standard vector addition and the scalar multiplication is defined as $k \cdot (x, y) = (0, ky)$.		1	1	6
	b)	Find a basis and dimension of the subspace W of \mathbb{R}^4 spanned by the vectors $u_1 = (1, -2, 5, -3)$, $u_2 = (2, 3, 1, -4)$ and $u_3 = (3, 8, -3, -5)$. Also extend the basis of W to a basis of \mathbb{R}^4 .		1	1	7
	c)	Find the basis and the dimension of the solution space of the homogeneous system of equations $x_1 + 2x_2 - 2x_3 + 2x_4 - x_5 = 0$, $x_1 + 2x_2 - x_3 + 3x_4 - 2x_5 = 0$ and $2x_1 + 4x_2 - 7x_3 + x_4 + x_5 = 0$.		1	1	7
OR						
2	a)	Determine which of the following are subspaces. (i) $W = \{(x, y, z), 2x - 3y + z - 1 = 0\}$ in \mathbb{R}^3 . (ii) $W = \{(x, y, z), x + 2y - 3z = 0\}$ in \mathbb{R}^3 .		1	1	6
	b)	Express the polynomial $v = t^2 + 4t - 3$ in $p(t)$ as a linear combination of the polynomials $p_1 = t^2 - 2t + 5$, $p_2 = 2t^2 - 3t$ and $p_3 = t + 3$.		1	1	7
	c)	Find the basis and dimension of the row space and column space of the following matrix $\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & 1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$.		1	1	7
UNIT - 2						
3	a)	Find a linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ such that $T(-1, 0) = (-1, 0, 2)$ and $T(2, 1) = (1, 2, 1)$.		1	1	6
	b)	Given $T: \mathbb{R}^4 \rightarrow \mathbb{R}^3$ where $T = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$, find a basis of the image set and the null set. Also verify rank-nullity theorem.		1	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Verify whether the linear map $G:R^2 \rightarrow R^3$ defined by $G(x, y) = (x+y, x-2y, 3x+y)$ is non-singular. Find G^{-1} , if it exists. If not, justify.	1	1	7
		OR			
4	a)	Determine whether the vector $u = (2, -1, 3)$ is in the range of the linear transformation $L:R^3 \rightarrow R^3$ given by $L(x, y, z) = (x+z, y+z, x+2y+2z)$.	1	1	6
	b)	Consider the matrix $A = \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$ that defines a linear operator on R^2 . Find the matrix of the linear transformation relative to the basis $S = \{u_1, u_2\} = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ -7 \end{bmatrix} \right\}$.	1	1	7
	c)	Let $L: P_2(t) \rightarrow P_1(t)$ be the linear transformation defined by $L(at^2 + bt + c) = (a+2b)t + (b+c)$. <ol style="list-style-type: none"> Is $-4t^2 + 2t - 2$ in kernel of L? Is $t^2 + 2t + 1$ in range of L? Find the basis of kernel of L. Find the basis and dimension of range of L. 	1	1	7
		UNIT - 3			
5	a)	Apply Cayley –Hamilton theorem to find A^4 if $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$.	1	1	6
	b)	Obtain the eigen spaces of the linear transformation $T:R^3 \rightarrow R^3$ defined by $T(x, y, z) = (2x+y, y-z, 2y+4z)$.	1	1	7
	c)	Find all possible Jordan canonical forms of the linear transformation T , whose characteristic and minimal polynomials are $f(t) = (t+8)^5(t-8)^4$ and $m(t) = (t-8)^2(t+8)^2$ respectively.	1	1	7
		OR			
6	a)	Apply Cayley-Hamilton theorem to find A^{-1} if $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$.	1	1	6
	b)	Obtain the eigen space for the linear transformation $T:P_2(t) \rightarrow P_2(t)$ defined by $T(at^2 + bt + c) = (2a-c)t^2 + (2a+b-2c)t + (-a+2c)$.	1	1	7
	c)	Find the characteristic and minimal polynomials of the matrix $A = \begin{bmatrix} 3 & 2 & 0 & 0 & 0 \\ 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$.	1	1	7

UNIT - 4															
7	a)	<p>Find the projection of the vector $v = t+1$ along $w = t^2 + 3$ in $P(t)$ with respect to $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.</p>	1	1	6										
	b)	<p>Find an orthogonal basis of the subspace W spanned by the following vectors $S = \{1, t, t^2\}$ of $P_2(t)$ given $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.</p>	1	1	7										
	c)	<p>Find a least-square solution of the system $AX = B$ and also the least square error if $A = \begin{bmatrix} 1 & -3 \\ 2 & 6 \\ 7 & -3 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix}$.</p>	1	1	7										
OR															
8	a)	<p>Find the angle between the vectors $A = \begin{bmatrix} -2 & 3 & 1 \\ 2 & 3 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 3 & 0 \end{bmatrix}$ where $\langle A, B \rangle = \text{Tr}(B^T A)$.</p>	1	1	6										
	b)	<p>Let W be subspace of R^5, spanned by the vectors $u = (1, 2, 3, -1, 2)$ and $v = (2, 4, 7, 2, -1)$. Find a basis of orthogonal complement of W.</p>	1	1	7										
	c)	<p>Find a QR factorization of $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.</p>	1	1	7										
UNIT - 5															
9	a)	<p>Compute the Hessian matrix of the function $f(x, y, z) = -9x^2 + 6xy - 2y^2 - 2xz - 2z^2$ at the point $(0, 0, 0)$.</p>	1	1	4										
	b)	<p>Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2xy + 2xz - 2yz$ to canonical form by finding the transformation matrix and hence discuss its nature.</p>	1	1	9										
	c)	<p>Reduce the dimension from two to one using principal component analysis for the data given below.</p> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td style="text-align: center;">X</td><td style="text-align: center;">4</td><td style="text-align: center;">8</td><td style="text-align: center;">13</td><td style="text-align: center;">7</td></tr> <tr> <td style="text-align: center;">Y</td><td style="text-align: center;">11</td><td style="text-align: center;">4</td><td style="text-align: center;">5</td><td style="text-align: center;">14</td></tr> </table>	X	4	8	13	7	Y	11	4	5	14	1	1	7
X	4	8	13	7											
Y	11	4	5	14											
OR															
10	a)	<p>Orthogonally diagonalize $A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$.</p>	1	1	10										
	b)	<p>Determine a singular value decomposition of $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{bmatrix}$.</p>	1	1	10										