

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: AI and ML

Duration: 3 hrs.

Course Code: 23MA4BSMML

Max Marks: 100

Course: Mathematical Foundation for Machine Learning – 2

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - 1	CO	PO	Marks														
1	a)		Find pseudo inverse of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$.	1	1	4														
	b)		Solve the equations $2x + 3y - z = 5$, $3x + 2y + z = 10$, $x - 5y + 3z = 0$ using Doolittle's decomposition method.	1	1	8														
	c)		Find the singular value decomposition of the matrix $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$.	1	1	8														
OR																				
2	a)		Apply Crout's decomposition method to solve the system of equations $x + y + z = 3$, $2x - y - z = 3$, $x - y + z = 9$.	1	1	8														
	b)		Apply principal component analysis to project the given 2-dimensional data on to 1-dimension and hence write the first principal component.	1	1	8														
	c)		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td></tr> <tr> <td>y</td><td>1</td><td>5</td><td>3</td><td>6</td><td>7</td><td>8</td></tr> </table> Determine the Cholesky factorization of given matrix A , such that $A = \begin{bmatrix} 25 & 15i \\ -15i & 75 \end{bmatrix}$.	x	2	3	4	5	6	7	y	1	5	3	6	7	8	1	1	4
x	2	3	4	5	6	7														
y	1	5	3	6	7	8														
UNIT - 2																				
3	a)		Write pseudocode to find the gradient of a vector valued function $\begin{bmatrix} x^2 + yz \\ e^x + \cos(y) \\ z^3 - xy \end{bmatrix}$ and hence find the gradient of $f = \begin{bmatrix} x^2y & xz \\ \sin(wz) & e^y + \cos(xw) \end{bmatrix}$.	1	1	6														
	b)		Find gradient of $A(X) = \begin{bmatrix} x^2y & xz \\ \sin(wz) & e^y + \cos(xw) \end{bmatrix}$ with respect to a matrix $X = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$.	1	1	6														
	c)		Suppose $f(x, y, z) = \ln(1 + x^2 + y^3 + z)$, find the multivariate	1	1	8														

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		series expansion up to quadratic order around the point (1, 2, -1).																	
UNIT - 3																			
4	a)	Apply automatic differentiation to compute the derivative of the function $f(x) = e^{3x} + \sin(2x)$.	1	1	4														
	b)	Consider a multilayer feed-forward neural network given below. Let the learning rate be 0.5. Train the network for the training tuples $(x_1 = 1, x_2 = 1, \text{output} = 0)$ and show weights and bias updates by using back-propagation algorithm. Assume that sigmoid activation function is used in the network.	1	1	8														
	c)	We have recorded the weekly average price y of a stock over 6 consecutive days and x shows the number of days. Fit the relation of the form $y = a + bx$	1	1	8														
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td></tr> <tr> <td>y</td><td>10</td><td>14</td><td>18</td><td>22</td><td>25</td><td>33</td></tr> </table> <p>The initial values are $a = 4.9$ and $b = 4.401$. The learning rate is mentioned as 0.05. Carry out one iteration.</p>	x	1	2	3	4	5	6	y	10	14	18	22	25	33			
x	1	2	3	4	5	6													
y	10	14	18	22	25	33													
UNIT - 4																			
5	a)	Show that $S = \{(x_1, x_2) : x_1^2 + x_2^2 \leq 4\}$ is a convex set.	1	1	5														
	b)	Given $f(x, y, z) = -9x^2 + 6xy - 2y^2 - 2xz - 2z^2$,	1	1	7														
		<ul style="list-style-type: none"> i) find all the stationary points of the function, ii) find the Hessian matrix and iii) classify the stationary points and find its extreme value. 																	
	c)	Apply gradient descent method to find the minimum of the function $f(x, y) = x - y + 2x^2 + 2xy + y^2$ with an initial guess $X = (0, 0)$. Carry out 3 iterations. Also write its pseudocode.	1	1	8														
OR																			
6	a)	Verify Legendre transformation condition $f(x) = f^{**}(x)$ for the function $f(x) = e^x$.	1	1	6														
	b)	Apply Newton's method to minimize the function $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ by taking the starting point as $X_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.	1	1	7														
	c)	Let $V_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $V_2 = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$, $V_3 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$. Find an implicit description $[f: d]$ of the plane H_1 that passes through V_1, V_2 and V_3 .	1	1	7														

UNIT - 5					
7	a)	Apply Lagrange's multiplier method to find optimum distances of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$.	1	1	6
	b)	Apply Fibonacci method to minimize the function $f(x) = x^2 + \frac{54}{x}$ in the range (0, 5) by taking $n = 3$.	1	1	7
	c)	Derive the Karush-Kuhn-Tucker conditions to find the minimum value of function $Z = 12x_1 + 21x_2 + 2x_1x_2 - 2x_1^2 - 2x_2^2$ subject to the constraints $x_1 + x_2 \leq 10$, $x_2 \leq 8$ and $x_1, x_2 \geq 0$.	1	1	7

SUPPLEMENTARY EXAMS 2024