

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 23MA4BSMML

Course: Mathematical Foundation for Machine Learning – 2

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions:

1. Each unit has an internal choice; answer one complete question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Compute the singular value decomposition of $X = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$.	1	1	8
	1	b)	Apply Crout's method to find the inverse of the matrix $A = \begin{bmatrix} 2 & 5 & 2 \\ 3 & -2 & 4 \\ -6 & 1 & -7 \end{bmatrix}$.	1	1	7
	1	c)	Find the Moore-Penrose pseudoinverse of the matrix $A = \begin{bmatrix} 4 & 0 \\ 3 & -5 \end{bmatrix}$.	1	1	5
OR						
2	2	a)	Find the inverse of the matrix $A = \begin{bmatrix} 4 & -2 & -6 \\ -2 & 10 & 9 \\ -6 & 9 & 14 \end{bmatrix}$ using Cholesky's decomposition method.	1	1	6
	2	b)	Apply Doolittle's method to solve the system of equations $x + 2y - z = -5$; $2x + 7y - 8z = -19$; $-x - 8y + 15z = 25$.	1	1	7
	2	c)	Find the Principal component for the data $(1,3), (2,2)$ and $(3,1)$.	1	1	7
UNIT - 2						
3	3	a)	Verify that $\frac{\partial(a^T X)}{\partial X} = a^T$, given $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ and $a = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}$.	1	1	5
	3	b)	Find the multivariate series expansion of the function $\log(\sqrt{1+x+y})$ up to quadratic order about the point $(0,1)$.	1	1	8

	c)	<p>Write the pseudocode to find the gradient of a matrix with respect to a matrix and hence find the gradient of</p> $\begin{bmatrix} x_0^2 + x_1 x_2 & x_1^2 x_2 - x_3 \\ \frac{(x_1 x_2^2)}{x_3} & x_1 x_2^3 \end{bmatrix}$ <p>with respect to the matrix $X = \begin{bmatrix} x_0 & x_1 \\ x_2 & x_3 \end{bmatrix}$.</p>	1	1	7										
		OR													
4	a)	<p>Write a pseudocode to find the gradient of a vector with respect to a matrix, and hence find the gradient of $f = [e^{x_0 x_1} \ e^{x_2 x_3}]$ with respect to $X = \begin{bmatrix} x_0 & x_1 \\ x_2 & x_3 \end{bmatrix}$.</p>	1	1	6										
	b)	<p>For the given matrix $f = \begin{bmatrix} x_0^2 + x_1 x_2 & x_1^2 x_2 - x_3 \\ \frac{(x_1 x_2^2)}{x_3} & x_1 x_2^3 \end{bmatrix}$ and $X = \begin{bmatrix} x_0 & x_1 \\ x_2 & x_3 \end{bmatrix}$, verify that $\frac{\partial(\text{Trace}f(X))}{\partial X} = \text{Trace}\left(\frac{\partial f(X)}{\partial X}\right)$.</p>	1	1	8										
	c)	<p>Create a linear model of the function $f(x, y, z, u) = x^2 y + e^z x + \log u$ about $(0, 0, 1, 2)$.</p>	1	1	6										
		UNIT - 3													
5	a)	<p>Construct a computation graph of the function $f(x) = \log(\sin(x^3)) + \sqrt{1 + \cos(x^3)}$. Also find $\frac{df}{dx}$ using automatic differentiation.</p>	1	1	6										
	b)	<p>Assume that the neuron has a sigmoid activation function, perform a forward pass and a backward pass on the network. Assume that the actual output of y is 1 and learning rate is 0.9.</p>	1	1	8										
	c)	<p>For the data given below, fit a linear regression line $y = a + bx$ using the gradient descent method.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td> <td>2</td> <td>3</td> <td>6</td> <td>8</td> </tr> <tr> <td>y</td> <td>3</td> <td>7</td> <td>5</td> <td>10</td> </tr> </table> <p>Initialize the weights $a = 1.5$ and $b = 0.95$. Update the weights such that the error is minimum taking learning rate as 0.1. Perform one iteration.</p>	x	2	3	6	8	y	3	7	5	10	1	1	6
x	2	3	6	8											
y	3	7	5	10											
		OR													

	6	a)	Construct a computation graph of the function $f(x, y) = \ln(x) + xy - \sin y$ and hence compute the derivative of f with respect to x and y at the point $(2, 5)$.	1	1	7												
	b)		Assume that the neuron has a sigmoid activation function, perform a forward pass and a backward pass on the network. Assume that the actual output of y is 0.5 and learning rate is 1.	1	1	7												
	c)		Consider the data given below and fit a linear regression line $y = ax + b$ using gradient descent method.	1	1	6												
			<table border="1"> <tr> <td>x</td> <td>-3</td> <td>-2</td> <td>1</td> <td>2</td> <td>3</td> </tr> <tr> <td>y</td> <td>5</td> <td>7</td> <td>9</td> <td>11</td> <td>13</td> </tr> </table> <p>Initialize the weights a and b as 0 and learning rate 0.001. Update the weights so that the error is minimal. Perform one iteration.</p>	x	-3	-2	1	2	3	y	5	7	9	11	13			
x	-3	-2	1	2	3													
y	5	7	9	11	13													
			UNIT - 4															
	7	a)	Check whether the set $S = \{(x_1, x_2, x_3) : x_1^2 + x_2^2 + x_3^2 \leq 1\}$ is a convex set or not.	1	1	6												
	b)		Find the local optimum for the function $f(x_1, x_2) = x_1^2 + x_2^2 + x_1 x_2 + 10(x_1 + x_2)$ using Gradient descent method starting at $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Perform two iterations.	1	1	7												
	c)		Let $A = \left\{ \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 6 \\ 0 \end{bmatrix} \right\}$, $B = \left\{ \begin{bmatrix} 0 \\ 5 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} \right\}$ and $n = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$, find a hyperplane H with normal n that separates A and B .	1	1	7												
			OR															
	8	a)	Prove that $f^{**}(x) = f(x)$, where $f(x) = cx^2$, $c > 0$.	1	1	5												
	b)		Find the local optimum using the Hessian matrix method for the function $f(x, y, z) = -x^3 + 3xz + 2y - y^2 - 3z^2$.	1	1	8												
	c)		Find the local optimum for the function $f(x, y) = x - y + 2x^2 + 2xy + 2y^2$ near $(0,0)$ using Newton's method. Perform two iterations.	1	1	7												
			UNIT - 5															
	9	a)	Apply the three-point interval search method to find the maximum of $f(x) = x \sin(4x)$ on $[0, 3]$. Perform three iterations.	1	1	6												

	b)	Maximize the function $z = 12x_1 + 21x_2 + 2x_1x_2 - 2x_1^2 - 2x_2^2$ subject to the constraints $x_1 + x_2 \leq 10$; $x_2 \leq 8$; $x_1, x_2 \geq 0$ by deriving the Karush-Kuhn-Tucker conditions.	1	1	7
	c)	Apply Lagrange's multiplier method to find the maximum and minimum values of $f(x, y, z) = 4y - 3z$ subject to the constraints $2x - y - z = 2$ and $x^2 + y^2 = 1$.	1	1	7
		OR			
10	a)	Apply the Fibonacci method to minimize the function $f(x) = x(x-1.5)$ in the range $[0,1]$ by taking $n = 4$.	1	1	6
	b)	Maximize the function $z = (x_1 - 2)^2 + (x_2 - 1)^2$ subject to the constraints $x_1^2 - x_2 \leq 0$; $x_1 + x_2 \leq 2$, $x_1, x_2 > 0$ by deriving the Karush-Kuhn-Tucker conditions.	1	1	7
	c)	Apply Lagrange's multiplier method to find the maximum and minimum values of $f(x, y) = 5x - 3y$ subject to the constraint $x^2 + y^2 = 136$.	1	1	7
