

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Chemical Engineering

Duration: 3 hrs.

Course Code: 19MA4BSSAP

Max Marks: 100

Course: Statistics and Probability

Instructions: 1. All units have internal choice, answer one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of Statistical tables is permitted.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		UNIT - 1	CO	PO	Marks																
1	a)	Estimate the chloric residual in a swimming pool 5 hours after it has been treated with chemicals by fitting an exponential curve of the form $y = ab^x$ to the following data: <table border="1"> <tr> <td>x(No.hours)</td> <td>2</td> <td>4</td> <td>6</td> <td>8</td> <td>10</td> <td>12</td> </tr> <tr> <td>y(chlorine residual parts/million)</td> <td>1.8</td> <td>1.5</td> <td>1.4</td> <td>1.1</td> <td>1.1</td> <td>0.9</td> </tr> </table>	x (No.hours)	2	4	6	8	10	12	y (chlorine residual parts/million)	1.8	1.5	1.4	1.1	1.1	0.9	2	1	6		
x (No.hours)	2	4	6	8	10	12															
y (chlorine residual parts/million)	1.8	1.5	1.4	1.1	1.1	0.9															
	b)	Alpha particles are emitted by radioactive source at the rate of three per every minute on the average. The number of particles is distributed according to the Poisson distribution. Calculate (i) the probability of getting no emissions in one minute (ii) at least two emissions in one minute (iii) at most one emission in one minute	2	1	7																
	c)	If the total cholesterol values for a certain population are approximately normally distributed with a mean of 200mg/ml and standard deviation of 20mg/ml. Find the probability that an individual selected at random from this population will have a cholesterol value: i) Between 180 and 200mg/ml. ii) Greater than 225mg/ml. iii) Less than 150mg/ml.	2	1	7																
OR																					
2	a)	Establish the formula $r = \frac{a^2 \sigma_x^2 + b^2 \sigma_y^2 - \sigma_{ax+by}^2}{-2ab \sigma_x \sigma_y}$.	1	1	6																
	b)	Fit a Poisson distribution to the following data: <table border="1"> <tr> <td>R.B.C. count per cell (x)</td> <td>0</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>Total</td> </tr> <tr> <td>No. of cells (f)</td> <td>11</td> <td>20</td> <td>28</td> <td>24</td> <td>12</td> <td>5</td> <td>100</td> </tr> </table>	R.B.C. count per cell (x)	0	1	2	3	4	5	Total	No. of cells (f)	11	20	28	24	12	5	100	2	1	7
R.B.C. count per cell (x)	0	1	2	3	4	5	Total														
No. of cells (f)	11	20	28	24	12	5	100														
	c)	In an examination taken by 500 candidates, average and standard deviation of marks obtained are 40 and 10. Assuming normal distribution, find i. How many have scored above 60? ii. How many will pass if 50 is fixed as the minimum for passing?	2	1	7																

UNIT - 2																																			
3	a)	<p>A habitual gambler is a member of two clubs A and B. He visits either of the clubs every day for playing cards. He never visits club A on two consecutive days. But, if he visits club B on a particular day, then the next day he is as likely to visit club B or club A.</p> <p>i) Find the transition matrix of this Markov chain. ii) Show that the matrix is a regular stochastic matrix.</p>	3	1	6																														
	b)	<p>Two fruits are selected at random from a bag containing 3 Apples, 2 Oranges and 4 Mangoes. If X and Y are respectively, the number of Apples and the number of Oranges included among the two fruits drawn from the bag, find the probability associated with all possible pair of values (x, y). Also find the covariance between the variables X and Y.</p>	2	1	7																														
	c)	<p>If X and Y are independent random variables, X takes values 2, 5, 7 with probability $1/2$, $1/4$, $1/4$ respectively and Y takes values 3, 4, 5 with probability $1/3$, $1/3$, $1/3$ respectively. Find (i) Joint probability distribution of X and Y, (ii) $E(X)$, $E(Y)$, $E(XY)$, and $E(X + Y)$.</p>	2	1	7																														
		OR																																	
4	a)	<p>The joint probability function of two random variable X and Y is given by $f(x, y) = k(2x + 3y)$ for $0 \leq x \leq 2; 1 \leq y \leq 3$.</p> <p>(i) Find the constant k. (ii) Calculate the marginal distribution of X and Y. (iii) Check whether X and Y are stochastically independent or not.</p>	2	1	6																														
	b)	<p>Three balls are drawn at random from a box containing 2 white, 3 red and 4 black balls. If X denotes the number of white balls and Y denotes the number of red balls drawn, find the joint probability distribution of (X, Y) and also the covariance of X and Y.</p>	2	1	7																														
	c)	<p>Three children A, B, C are throwing a ball to each other. A always throws the ball to B and B always throws ball to C. However, C is just as likely to throw the ball to B as to A. Find the transition matrix of the Markov process. Suppose C is the first person with the ball, then find the probability that A, B and C having a ball after 3rd throws.</p>	3	1	7																														
		UNIT - 3																																	
5	a)	<p>Apply CRD to analyze the data</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr><td>A-32</td><td>D-34</td><td>E-39</td><td>D-36</td><td>C-35</td></tr> <tr><td>B-37</td><td>B-43</td><td>C-41</td><td>A-42</td><td>E-35</td></tr> <tr><td>C-40</td><td>A-35</td><td>E-33</td><td>A-33</td><td>D-35</td></tr> <tr><td>D-37</td><td>E-35</td><td>B-37</td><td>E-32</td><td>C-32</td></tr> <tr><td>E-43</td><td>A-35</td><td>C-37</td><td>D-39</td><td>B-32</td></tr> <tr><td>B-38</td><td>C-27</td><td>D-37</td><td>B-31</td><td>A-40</td></tr> </table>	A-32	D-34	E-39	D-36	C-35	B-37	B-43	C-41	A-42	E-35	C-40	A-35	E-33	A-33	D-35	D-37	E-35	B-37	E-32	C-32	E-43	A-35	C-37	D-39	B-32	B-38	C-27	D-37	B-31	A-40	4	1	10
A-32	D-34	E-39	D-36	C-35																															
B-37	B-43	C-41	A-42	E-35																															
C-40	A-35	E-33	A-33	D-35																															
D-37	E-35	B-37	E-32	C-32																															
E-43	A-35	C-37	D-39	B-32																															
B-38	C-27	D-37	B-31	A-40																															

	c)	<p>An experiment was conducted on the yield of potatoes in a randomized block design with four replications. Analyse the following 2^2 factorial design.</p> <table border="1"> <thead> <tr> <th>Block</th><th colspan="4">Treatment Combinations</th></tr> </thead> <tbody> <tr> <td>(1)</td><td>(1) - 23</td><td>K - 25</td><td>P - 22</td><td>KP - 38</td></tr> <tr> <td>(2)</td><td>P - 40</td><td>(1) - 26</td><td>K - 36</td><td>KP - 38</td></tr> <tr> <td>(3)</td><td>(1) - 29</td><td>K - 20</td><td>KP - 30</td><td>P - 20</td></tr> <tr> <td>(4)</td><td>KP - 34</td><td>K - 31</td><td>P - 24</td><td>(1) - 28</td></tr> </tbody> </table> <p style="text-align: center;">OR</p>	Block	Treatment Combinations				(1)	(1) - 23	K - 25	P - 22	KP - 38	(2)	P - 40	(1) - 26	K - 36	KP - 38	(3)	(1) - 29	K - 20	KP - 30	P - 20	(4)	KP - 34	K - 31	P - 24	(1) - 28	4	1	10							
Block	Treatment Combinations																																				
(1)	(1) - 23	K - 25	P - 22	KP - 38																																	
(2)	P - 40	(1) - 26	K - 36	KP - 38																																	
(3)	(1) - 29	K - 20	KP - 30	P - 20																																	
(4)	KP - 34	K - 31	P - 24	(1) - 28																																	
6	a)	<p>Data recorded on yield of four varieties in an experiment with four replications for which one value is missing. Estimate the missing value and construct the ANOVA table by applying RBD technique.</p> <table border="1"> <thead> <tr> <th>P</th><th>R</th><th>Q</th><th>S</th></tr> </thead> <tbody> <tr> <td>5.52</td><td>5.57</td><td>5.071</td><td>9.16</td></tr> <tr> <th>S</th><th>R</th><th>Q</th><th>P</th></tr> <tr> <td>6.69</td><td>5.14</td><td>-</td><td>6.09</td></tr> <tr> <th>S</th><th>P</th><th>Q</th><th>R</th></tr> <tr> <td>2.89</td><td>6.02</td><td>6.53</td><td>2.83</td></tr> <tr> <th>R</th><th>Q</th><th>S</th><th>P</th></tr> <tr> <td>9.76</td><td>6.25</td><td>8.9</td><td>9.77</td></tr> </tbody> </table>	P	R	Q	S	5.52	5.57	5.071	9.16	S	R	Q	P	6.69	5.14	-	6.09	S	P	Q	R	2.89	6.02	6.53	2.83	R	Q	S	P	9.76	6.25	8.9	9.77	4	1	10
P	R	Q	S																																		
5.52	5.57	5.071	9.16																																		
S	R	Q	P																																		
6.69	5.14	-	6.09																																		
S	P	Q	R																																		
2.89	6.02	6.53	2.83																																		
R	Q	S	P																																		
9.76	6.25	8.9	9.77																																		
	b)	<p>An oil company tested 4 different blends - A, B, C and D of gasoline for fuel efficiency according to a Latin Square Design in order to control for the variability of 4 different drivers and 4 different models of cars. Fuel efficiency was measured in miles per gallon after driving the cars over a standard course. The data are presented below. Analyse the data.</p> <table border="1"> <thead> <tr> <th rowspan="2">Driver</th><th colspan="4">Car Model</th></tr> <tr> <th>I</th><th>II</th><th>III</th><th>IV</th></tr> </thead> <tbody> <tr> <td>1</td><td>D-15.5</td><td>B-33.9</td><td>C-13.2</td><td>A-29.1</td></tr> <tr> <td>2</td><td>B-16.3</td><td>C-26.6</td><td>A-19.4</td><td>D-22.8</td></tr> <tr> <td>3</td><td>C-10.8</td><td>A-31.8</td><td>D-17.1</td><td>B-30.3</td></tr> <tr> <td>4</td><td>A-14.7</td><td>D-34</td><td>B-19.7</td><td>C-21.6</td></tr> </tbody> </table>	Driver	Car Model				I	II	III	IV	1	D-15.5	B-33.9	C-13.2	A-29.1	2	B-16.3	C-26.6	A-19.4	D-22.8	3	C-10.8	A-31.8	D-17.1	B-30.3	4	A-14.7	D-34	B-19.7	C-21.6	4	1	10			
Driver	Car Model																																				
	I	II	III	IV																																	
1	D-15.5	B-33.9	C-13.2	A-29.1																																	
2	B-16.3	C-26.6	A-19.4	D-22.8																																	
3	C-10.8	A-31.8	D-17.1	B-30.3																																	
4	A-14.7	D-34	B-19.7	C-21.6																																	
		UNIT - 4																																			
7	a)	<p>A company claims that the mean thermal efficiency of diesel engines produced by them is 32.3. A random sample of 40 engines was examined, which showed the mean thermal efficiency of 31.4 and standard deviation of 1.6. Check whether the company's claim is true? Use 5% level of significance.</p>	4	1	6																																
	b)	<p>In 210 families of females with primary unipolar major depression, they found that alcoholism was present in 89. Of 299 control families, alcoholism was present in 94. Do these data provide sufficient evidence for us to conclude that alcoholism is more likely to be present in families of subjects with unipolar depression? Use ($\alpha = 5\%$)</p>	4	1	7																																
	c)	<p>The mean yield of two sets of plots and their variability are as given below. Examine whether the difference in the variability in yields is significant. Use ($\alpha = 5\%$).</p> <table border="1"> <thead> <tr> <th></th><th>Set of 40 plots</th><th>Set of 60 plots</th></tr> </thead> <tbody> <tr> <td>Mean yield per plot</td><td>1258 kg</td><td>1243 kg</td></tr> <tr> <td>S.D. per plot</td><td>34</td><td>28</td></tr> </tbody> </table>		Set of 40 plots	Set of 60 plots	Mean yield per plot	1258 kg	1243 kg	S.D. per plot	34	28	4	1	7																							
	Set of 40 plots	Set of 60 plots																																			
Mean yield per plot	1258 kg	1243 kg																																			
S.D. per plot	34	28																																			

OR																								
8	a)	In an otological examination of schoolchildren, out of 146 children examined 21 were found to have some type of otological abnormalities. Does it confirm with statement that 20% of the schoolchildren have otological abnormalities? Use 1% L.O.S.	4	1	6																			
	b)	In an elementary school examination, the mean grade of 32 boys was 72 with a standard deviation of 8, while the mean grade of 36 girls was 75 with a standard deviation of 6. Test the hypothesis that the average performance of girls is better than boys. Use 1% L.O.S.	4	1	7																			
	c)	In an infantile paralysis epidemic 500 persons contracted the disease. 300 received no serum treatment and of them 75 became paralysed. Of those who received serum treatment 65 became paralysed. Was the serum treatment effective? Use 5% L.O.S.	4	1	7																			
UNIT - 5																								
9	a)	In a study of usefulness of yoga in weight reduction, a random sample of 8 persons undergoing yoga were examined of their weight before and after yoga with the following results: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>Before</td><td>209</td><td>178</td><td>169</td><td>212</td><td>180</td><td>192</td></tr> <tr><td>After</td><td>196</td><td>171</td><td>170</td><td>207</td><td>177</td><td>190</td></tr> </table> Test whether yoga is useful in weight reduction at $\alpha = 1\%$.	Before	209	178	169	212	180	192	After	196	171	170	207	177	190	4	1	6					
Before	209	178	169	212	180	192																		
After	196	171	170	207	177	190																		
	b)	Two sample polls of votes for 2 candidates A and B are taken from residents of different areas. The results are given below. Examine whether the nature of the area is related to voting preferences in this election using Chi Square distribution at 5% level of significance. <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><th rowspan="2">Area</th><th colspan="2">Votes for</th></tr> <tr><th>A</th><th>B</th></tr> <tr><td>Rural</td><td>620</td><td>380</td></tr> <tr><td>Urban</td><td>550</td><td>450</td></tr> </table>	Area	Votes for		A	B	Rural	620	380	Urban	550	450	4	1	7								
Area	Votes for																							
	A	B																						
Rural	620	380																						
Urban	550	450																						
	c)	The chloride content of water was measured at three different stations of a lake. The seasonal averages of chloride in mg/l are given below. Analyse the data by two factor analyses. <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><th rowspan="2">Season</th><th colspan="3">Stations</th></tr> <tr><th>S₁</th><th>S₂</th><th>S₃</th></tr> <tr><td>Summer</td><td>187.4</td><td>341.8</td><td>240.6</td></tr> <tr><td>Monsoon</td><td>172.9</td><td>198.2</td><td>150.2</td></tr> <tr><td>Winter</td><td>154.3</td><td>157.4</td><td>137.1</td></tr> </table>	Season	Stations			S ₁	S ₂	S ₃	Summer	187.4	341.8	240.6	Monsoon	172.9	198.2	150.2	Winter	154.3	157.4	137.1	4	1	7
Season	Stations																							
	S ₁	S ₂	S ₃																					
Summer	187.4	341.8	240.6																					
Monsoon	172.9	198.2	150.2																					
Winter	154.3	157.4	137.1																					
OR																								
10	a)	From an experiment on milk yield (in lbs.) of cows fed with two diets – field wilted alfalfa (diet 1) and dewatered alfalfa (diet 2), the following data are obtained. <table border="1" style="display: inline-table; vertical-align: middle;"> <tr><th>Diets</th><th>Sample Sizes</th><th>Standard deviations</th></tr> <tr><td>Field wilted alfalfa</td><td>13</td><td>4.8541</td></tr> <tr><td>Dewatered alfalfa</td><td>12</td><td>4.2847</td></tr> </table> Test whether the population variances are same at $\alpha = 5\%$.	Diets	Sample Sizes	Standard deviations	Field wilted alfalfa	13	4.8541	Dewatered alfalfa	12	4.2847	4	1	6										
Diets	Sample Sizes	Standard deviations																						
Field wilted alfalfa	13	4.8541																						
Dewatered alfalfa	12	4.2847																						

	b)	<p>A group of 10 rats fed on a diet A and another group of 8 rats fed on a different diet B, recorded the following increase in weights.</p> <table border="1"> <tr> <td>Diet A</td><td>5</td><td>6</td><td>8</td><td>1</td><td>12</td><td>4</td><td>3</td><td>9</td><td>6</td><td>10</td></tr> <tr> <td>Diet B</td><td>2</td><td>3</td><td>6</td><td>8</td><td>10</td><td>1</td><td>2</td><td>8</td><td>-</td><td>-</td></tr> </table> <p>Apply difference of mean test and test the superiority of diet A over that of B? Use 1% L.O.S.</p>	Diet A	5	6	8	1	12	4	3	9	6	10	Diet B	2	3	6	8	10	1	2	8	-	-	4	1	7
Diet A	5	6	8	1	12	4	3	9	6	10																	
Diet B	2	3	6	8	10	1	2	8	-	-																	
	c)	<p>It is desired to test whether the number of gamma rays emitted per second by a certain radioactive substance is a random variable having the Poisson distribution with mean 2.4. Use the following data obtained for 300 one-second intervals to test this null hypothesis. Use 5% L.O.S.</p> <table border="1"> <tr> <td>Number of gamma rays</td> <td>0</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7 or more</td> </tr> <tr> <td>Frequency</td> <td>19</td> <td>48</td> <td>66</td> <td>74</td> <td>44</td> <td>35</td> <td>10</td> <td>5</td> </tr> </table>	Number of gamma rays	0	1	2	3	4	5	6	7 or more	Frequency	19	48	66	74	44	35	10	5	4	1	7				
Number of gamma rays	0	1	2	3	4	5	6	7 or more																			
Frequency	19	48	66	74	44	35	10	5																			
