

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Computer Science and Business Systems

Duration: 3 hrs.

Course Code: 24MA4BSSBS

Max Marks: 100

Course: Statistical Modeling for Business Systems

Instructions: 1. Each unit has an internal choice; answer one complete question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of statistical tables are permitted.

		UNIT - 1	CO	PO	Marks																
1	a)	<p>Calculate rank correlation coefficient from the following data:</p> <table border="1"> <tr><td>x</td><td>10</td><td>20</td><td>30</td><td>30</td><td>40</td><td>45</td><td>50</td></tr> <tr><td>y</td><td>15</td><td>20</td><td>25</td><td>30</td><td>40</td><td>40</td><td>40</td></tr> </table> <p>Hence interpret the nature of association between x and y.</p>	x	10	20	30	30	40	45	50	y	15	20	25	30	40	40	40	1	1	6
x	10	20	30	30	40	45	50														
y	15	20	25	30	40	40	40														
	b)	<p>Fit a parabola of the form $y = a + bx + cx^2$ for the following data:</p> <table border="1"> <tr><td>x</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td></tr> <tr><td>y</td><td>2</td><td>6</td><td>7</td><td>8</td><td>10</td><td>11</td><td>11</td></tr> </table>	x	1	2	3	4	5	6	7	y	2	6	7	8	10	11	11	1	1	7
x	1	2	3	4	5	6	7														
y	2	6	7	8	10	11	11														
	c)	<p>Compute the possible multiple correlation coefficients when the following are known: $r_{12} = 0.98$, $r_{13} = 0.44$ and $r_{23} = 0.54$.</p>	1	1	7																
OR																					
2	a)	<p>Calculate the Pearson's coefficient of correlation and determine the nature of the correlation from the following data:</p> <table border="1"> <tr><td>x</td><td>12</td><td>9</td><td>8</td><td>10</td><td>11</td><td>13</td><td>7</td></tr> <tr><td>y</td><td>14</td><td>8</td><td>6</td><td>9</td><td>11</td><td>12</td><td>3</td></tr> </table>	x	12	9	8	10	11	13	7	y	14	8	6	9	11	12	3	1	1	6
x	12	9	8	10	11	13	7														
y	14	8	6	9	11	12	3														
	b)	<p>Determine the equation of a straight line of the form $y = a + bx$ which best fits the following data:</p> <table border="1"> <tr><td>x</td><td>10</td><td>12</td><td>13</td><td>16</td><td>17</td><td>20</td><td>25</td></tr> <tr><td>y</td><td>10</td><td>22</td><td>24</td><td>27</td><td>29</td><td>33</td><td>37</td></tr> </table>	x	10	12	13	16	17	20	25	y	10	22	24	27	29	33	37	1	1	7
x	10	12	13	16	17	20	25														
y	10	22	24	27	29	33	37														
	c)	<p>In a partially destroyed laboratory record, the only information available are the equations of the lines of regression of y on x and x on y. The respective equations are $4x - 5y + 33 = 0$ and $20x - 9y = 107$. Calculate:</p> <p>(i) \bar{x} and \bar{y} (ii) the co-efficient of correlation between x and y (iii) interpret the nature of association between x and y.</p>	1	1	7																
UNIT - 2																					
3	a)	<p>A random sample of size 50 is taken from a gamma distribution with parameters $\alpha = 5$ and $\beta = 20$. State the approximate sampling distribution of the sample mean and hence calculate approximately the</p>	1	1	6																

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		probability that the sample mean is greater than 115.															
	b)	Two independent samples are drawn from normal populations with unknown variances. Sample 1 has size 12, sample mean 14.5, and sample standard deviation 4.8. Sample 2 has size 15, sample mean 17.2, and sample standard deviation 5.3. What is the probability that the mean of Sample 1 exceeds that of Sample 2 by at least 1 unit?	1	1	7												
	c)	Determine the Maximum Likelihood Estimate of μ from a Poisson distribution with parameter μ , based on the following random sample: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x</td> <td>0</td> <td>1</td> <td>2</td> <td>3</td> </tr> <tr> <td>f</td> <td>50</td> <td>30</td> <td>15</td> <td>5</td> </tr> </table>	x	0	1	2	3	f	50	30	15	5	1	1	7		
x	0	1	2	3													
f	50	30	15	5													
OR																	
4	a)	If independent random samples of size 8 come from normal populations having the same variance, what is the probability that either sample variance will be at least 7 times as large as the other?	1	1	7												
	b)	Two independent random samples of sizes 100 and 120 respectively are drawn from two Poisson populations with parameters 2 and 3 respectively. What is the probability that the sample mean difference lies between -1 and 0?	1	1	7												
	c)	A discrete random variable has the following probability distribution: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>x</td> <td>0</td> <td>1</td> <td>2</td> </tr> <tr> <td>$P(X = x)$</td> <td>2θ</td> <td>$\frac{2}{3} - \theta$</td> <td>$\frac{1}{3} - \theta$</td> </tr> </table> The following sample was drawn from this distribution: {0, 0, 0, 1, 1, 1, 2}. Calculate the method of moments estimate of θ . Hence determine an estimate of the population variance.	x	0	1	2	$P(X = x)$	2θ	$\frac{2}{3} - \theta$	$\frac{1}{3} - \theta$	1	1	7				
x	0	1	2														
$P(X = x)$	2θ	$\frac{2}{3} - \theta$	$\frac{1}{3} - \theta$														
UNIT - 3																	
5	a)	A test is designed to measure the level of anxiety that was administered to a sample of male and female patients just prior to undergoing the same surgical procedure. The sample sizes and the variances computed from the scores were as follows: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>Male</td> <td>Female</td> </tr> <tr> <td>$n_1 = 16$</td> <td>$n_2 = 21$</td> </tr> <tr> <td>$s^2_1 = 150$</td> <td>$s^2_2 = 275$</td> </tr> </table> Do these data provide sufficient evidence to indicate that in the represented populations the scores made by the males and females are same?	Male	Female	$n_1 = 16$	$n_2 = 21$	$s^2_1 = 150$	$s^2_2 = 275$	2	1	7						
Male	Female																
$n_1 = 16$	$n_2 = 21$																
$s^2_1 = 150$	$s^2_2 = 275$																
	b)	Two salesmen, A and B, are employed by a company. Recently, it conducted a sample survey yielding the following data: <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td></td> <td><i>Salesman A</i></td> <td><i>Salesman B</i></td> </tr> <tr> <td><i>No. of sales</i></td> <td>20</td> <td>22</td> </tr> <tr> <td><i>Average weekly sales (Rs in Lakhs)</i></td> <td>30</td> <td>25</td> </tr> <tr> <td><i>Standard Deviation (Rs in Lakhs)</i></td> <td>10</td> <td>7</td> </tr> </table> Use a suitable t-test to check if there is any significant difference between the average sales of the two salesmen.		<i>Salesman A</i>	<i>Salesman B</i>	<i>No. of sales</i>	20	22	<i>Average weekly sales (Rs in Lakhs)</i>	30	25	<i>Standard Deviation (Rs in Lakhs)</i>	10	7	2	1	7
	<i>Salesman A</i>	<i>Salesman B</i>															
<i>No. of sales</i>	20	22															
<i>Average weekly sales (Rs in Lakhs)</i>	30	25															
<i>Standard Deviation (Rs in Lakhs)</i>	10	7															

	c)	<p>A farmer applied 3 types of fertilizers on 4 separate plots. The figure of yield per acre is tabulated below:</p> <table border="1"> <thead> <tr> <th></th><th>A</th><th>B</th><th>C</th><th>D</th></tr> </thead> <tbody> <tr> <td>Nitrogen</td><td>6</td><td>4</td><td>8</td><td>6</td></tr> <tr> <td>Potash</td><td>7</td><td>6</td><td>6</td><td>9</td></tr> <tr> <td>Phosphate</td><td>8</td><td>5</td><td>10</td><td>9</td></tr> </tbody> </table> <p>Find out if the plots are materially different in fertility, as also, if the three fertilizers make any significant difference in the yield.</p>		A	B	C	D	Nitrogen	6	4	8	6	Potash	7	6	6	9	Phosphate	8	5	10	9	2	1	7
	A	B	C	D																					
Nitrogen	6	4	8	6																					
Potash	7	6	6	9																					
Phosphate	8	5	10	9																					
		OR																							
6	a)	<p>It has previously been recorded that the average depth of ocean at a particular region is 67.4 fathoms. Is there reason to believe this at 0.01 level of significance if the readings at 40 random locations in that particular region showed a mean of 69.3 with standard deviation of 5.4 fathoms?</p>	2	1	6																				
	b)	<p>A researcher wants to compare the effectiveness of three different diets on weight loss. The weight loss (in kg) for participants in each group after 4 weeks is recorded as follows:</p> <table border="1"> <thead> <tr> <th>Diet A</th><th>Diet B</th><th>Diet C</th></tr> </thead> <tbody> <tr> <td>4</td><td>6</td><td>8</td></tr> <tr> <td>5</td><td>7</td><td>7</td></tr> <tr> <td>6</td><td>5</td><td>9</td></tr> <tr> <td>5</td><td>6</td><td>8</td></tr> </tbody> </table> <p>Using a One -Way ANOVA, test at 5% significance level to determine whether there is a significant difference in mean weight loss between the three diets.</p>	Diet A	Diet B	Diet C	4	6	8	5	7	7	6	5	9	5	6	8	2	1	7					
Diet A	Diet B	Diet C																							
4	6	8																							
5	7	7																							
6	5	9																							
5	6	8																							
	c)	<p>The average weekly losses of man-hours due to strikes in an institute before and after a disciplinary program was implemented are as follows: Is there reason to believe that the disciplinary program is effective at 5% level of significance?</p> <table border="1"> <thead> <tr> <th>Before</th><th>45</th><th>73</th><th>46</th><th>124</th><th>33</th><th>57</th><th>83</th><th>34</th></tr> </thead> <tbody> <tr> <th>After</th><td>36</td><td>60</td><td>44</td><td>119</td><td>35</td><td>51</td><td>77</td><td>29</td></tr> </tbody> </table>	Before	45	73	46	124	33	57	83	34	After	36	60	44	119	35	51	77	29	2	1	7		
Before	45	73	46	124	33	57	83	34																	
After	36	60	44	119	35	51	77	29																	
		UNIT - 4																							
7	a)	<p>A food inspector examines 16 jars of a certain brand of jam to determine the present of foreign impurities. The following data were recorded: 2.4, 2.3, 3.1, 2.2, 2.3, 1.2, 1.0, 2.4, 1.7, 1.1, 4.2, 1.9, 1.7, 3.6, 1.6, 2.3. At the 5% level of significance, apply a Wilcoxon signed rank test to examine the null hypothesis that the median present of impurities in this brand of jam is 2.5.</p>	2	1	6																				
	b)	<p>The lengths of the femur, in mm, in samples of a mouse from Britain and North Africa are given below:</p> <table border="1"> <thead> <tr> <th>Britain</th><th>12.3</th><th>12.7</th><th>13.1</th><th>10.8</th><th>11.3</th><th>11.8</th><th>12.4</th><th>13.2</th></tr> </thead> <tbody> <tr> <th>North Africa</th><td>10.6</td><td>9.8</td><td>11.5</td><td>10.0</td><td>11.1</td><td>-</td><td>-</td><td>-</td></tr> </tbody> </table> <p>Conduct a non-parametric test at the 5% level to test whether the data are consistent with the assumption that the mice in Britain and North Africa are the same breed.</p>	Britain	12.3	12.7	13.1	10.8	11.3	11.8	12.4	13.2	North Africa	10.6	9.8	11.5	10.0	11.1	-	-	-	2	1	7		
Britain	12.3	12.7	13.1	10.8	11.3	11.8	12.4	13.2																	
North Africa	10.6	9.8	11.5	10.0	11.1	-	-	-																	
	c)	<p>Fit a Poisson distribution to the following data and test for the goodness of fit at $\alpha = 5\%$.</p> <table border="1"> <thead> <tr> <th>x</th><th>0</th><th>1</th><th>2</th><th>3</th><th>4</th></tr> </thead> <tbody> <tr> <th>f</th><td>419</td><td>352</td><td>154</td><td>56</td><td>19</td></tr> </tbody> </table>	x	0	1	2	3	4	f	419	352	154	56	19	1	1	7								
x	0	1	2	3	4																				
f	419	352	154	56	19																				
		OR																							

	8	a)	A sample analysis of examination results of 200 MBAs was made. It was found that 46 students had failed, 68 had secured a second division and the rest were placed in the first division. Do these figures commensurate with the general examination result which is in the ratio of 4:3:2:1 for various categories respectively?	2	1	6																						
		b)	The following data indicate the lifetime (in hours) of samples of two brands of light bulbs, brands A and B, in continuous use:	2	1	7																						
			<table border="1"> <tr><td><i>A</i></td><td>603</td><td>625</td><td>641</td><td>622</td><td>585</td><td>593</td><td>660</td><td>600</td><td>633</td><td>580</td></tr> <tr><td><i>B</i></td><td>620</td><td>640</td><td>646</td><td>620</td><td>652</td><td>639</td><td>590</td><td>646</td><td>631</td><td>669</td></tr> </table> <p>Use the Mann-Whitney test to compare the lifetime of brands A and B of light bulbs.</p>	<i>A</i>	603	625	641	622	585	593	660	600	633	580	<i>B</i>	620	640	646	620	652	639	590	646	631	669			
<i>A</i>	603	625	641	622	585	593	660	600	633	580																		
<i>B</i>	620	640	646	620	652	639	590	646	631	669																		
		c)	The following data represent the number of hours that a rechargeable hedge trimmer operates before a recharge is required: 1.5, 2.2, 0.9, 1.3, 2.0, 1.6, 1.8, 1.5, 2.0, 1.2, and 1.7. Test the hypothesis at the 0.05 level of significance that this particular trimmer operates with a median of 1.8 hours requiring a recharge.	2	1	7																						
			UNIT - 5																									
	9	a)	Apply the technique of semi-averages to fit a straight line for the trend corresponding to the following time series data.	1	1	10																						
			<table border="1"> <tr><td><i>Year</i></td><td>2014</td><td>2015</td><td>2016</td><td>2017</td><td>2018</td><td>2019</td><td>2020</td></tr> <tr><td><i>Sales</i></td><td>80</td><td>90</td><td>92</td><td>83</td><td>94</td><td>99</td><td>92</td></tr> </table> <p>Provide a free-hand diagram representing the trend in each case.</p>	<i>Year</i>	2014	2015	2016	2017	2018	2019	2020	<i>Sales</i>	80	90	92	83	94	99	92									
<i>Year</i>	2014	2015	2016	2017	2018	2019	2020																					
<i>Sales</i>	80	90	92	83	94	99	92																					
		b)	<p>Consider the following chronological data:</p> <table border="1"> <tr><td><i>Year</i></td><td>2015</td><td>2016</td><td>2017</td><td>2018</td><td>2019</td></tr> <tr><td><i>Sales</i></td><td>25</td><td>28</td><td>35</td><td>40</td><td>52</td></tr> </table> <p>(i) Construct a suitable mathematical model to predict trend values for sales by assuming a linear trend. (ii) Estimate the sales for the year 2026. (iii) Determine the rate of change in the sales per month.</p>	<i>Year</i>	2015	2016	2017	2018	2019	<i>Sales</i>	25	28	35	40	52	1	1	10										
<i>Year</i>	2015	2016	2017	2018	2019																							
<i>Sales</i>	25	28	35	40	52																							
			OR																									
	10	a)	<p>The following are the annual profits in millions of rupees in a certain business:</p> <table border="1"> <tr><td><i>Year</i></td><td>2015</td><td>2016</td><td>2017</td><td>2018</td><td>2019</td></tr> <tr><td><i>Profits</i></td><td>60</td><td>72</td><td>75</td><td>65</td><td>80</td></tr> </table> <p>Apply the method of least squares to fit a suitable trend line. Hence estimate the profit for the year 2030.</p>	<i>Year</i>	2015	2016	2017	2018	2019	<i>Profits</i>	60	72	75	65	80	1	1	10										
<i>Year</i>	2015	2016	2017	2018	2019																							
<i>Profits</i>	60	72	75	65	80																							
		b)	<p>Compute the 4-yearly moving averages to analyze the trend for the following time series data pertaining to production in thousands of units manufactured:</p> <table border="1"> <tr><td><i>Year</i></td><td>2013</td><td>2014</td><td>2015</td><td>2016</td><td>2017</td><td>2018</td><td>2019</td><td>2020</td></tr> <tr><td><i>Production</i></td><td>21</td><td>22</td><td>23</td><td>24</td><td>25</td><td>26</td><td>27</td><td>26</td></tr> </table> <p>Indicate the approximate error in prediction.</p>	<i>Year</i>	2013	2014	2015	2016	2017	2018	2019	2020	<i>Production</i>	21	22	23	24	25	26	27	26	1	1	10				
<i>Year</i>	2013	2014	2015	2016	2017	2018	2019	2020																				
<i>Production</i>	21	22	23	24	25	26	27	26																				
