

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 20MA6IENME

Max Marks: 100

Course: Numerical Methods for Engineers

Date: 07.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks														
1	a)	<p>Solve the tri-diagonal system</p> $\begin{bmatrix} 5 & 2 & & & & \\ 4 & 21 & 1 & & & \\ & 1 & -1 & 3 & & \\ & & -3 & -4 & -5 & \\ & & & 1 & 2 & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 9 \\ 49 \\ -13 \\ -55 \\ 16 \end{bmatrix} \text{ using Thomas algorithm.}$	<i>CO1</i>	<i>PO1</i>	6														
	b)	<p>Approximate the root of the system of equations $x = 0.2x^2 + 0.8$ and $y = 0.3xy^2 + 0.7$ near $(0.5, 0.5)$, using fixed point iteration method.</p>	<i>CO1</i>	<i>PO1</i>	7														
	c)	<p>Compute all the eigenvalues and the eigenvectors of the matrix</p> $A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix} \text{ using Jacobi's method.}$	<i>CO1</i>	<i>PO1</i>	7														
UNIT - II																			
2	a)	<p>Employ Bessel's formula to predict the value of $f(27.5)$ from the data</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>25</td><td>26</td><td>27</td><td>28</td><td>29</td><td>30</td></tr> <tr> <td>$f(x)$</td><td>4.000</td><td>3.846</td><td>3.704</td><td>3.571</td><td>3.448</td><td>3.333</td></tr> </table>	x	25	26	27	28	29	30	$f(x)$	4.000	3.846	3.704	3.571	3.448	3.333	<i>CO1</i>	<i>PO1</i>	6
x	25	26	27	28	29	30													
$f(x)$	4.000	3.846	3.704	3.571	3.448	3.333													
	b)	<p>Predict $f'(x)$ at $x = 2.3$ from $f(x) = x^3 \cos x$ using central differences formula and refine the results using Richardson extrapolation.</p>	<i>CO1</i>	<i>PO1</i>	7														
	c)	<p>Evaluate $\int_0^1 \frac{1}{1+x} dx$ by using Romberg's integration method with Trapezoidal rule by taking $h = 0.5, 0.25$ and 0.125.</p>	<i>CO1</i>	<i>PO1</i>	7														

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
3	a)	Apply Milne's predictor corrector method to solve $y' = x - y^2$ with $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$, $y(0.6) = 0.1762$ for $y(0.8)$.	CO2	PO1	7
	b)	Solve the system of equations $x' = -3x + 2y$, $y' = 3x - 4y$, $x(0) = 0$, $y(0) = 0.5$ at $t = 0.4$ with $h = 0.2$ using Runge-Kutta 2 nd order method.	CO2	PO1	9
	c)	Derive the finite difference approximations for first and second order derivatives of $f(x, y)$.	CO2	PO1	4
OR					
4	a)	Apply Adams-Basforth predictor corrector method to compute $y(0.8)$ given $\frac{dy}{dx} = 1 + y^2$ with $y(0) = 0$, $y(0.2) = 0.2027$, $y(0.4) = 0.4228$, $y(0.6) = 0.6841$.	CO2	PO1	7
	b)	Solve the system of equations $\frac{dy}{dx} = z - x$, $\frac{dz}{dx} = y + x$, $y(0) = 1$, $z(0) = 1$ at $x = 0.1$ with $h = 0.1$ using Runge-Kutta 4 th order method.	CO2	PO1	9
	c)	Reduce the differential equation $y^{iv} + y = e^{2t} + \cos(t)$, $y(0) = 0$, $y'(0) = -1$, $y''(0) = -1$, $y'''(0) = 7$ into a system of first order initial value problems.	CO2	PO1	4
UNIT - IV					
5	a)	Find the solution of $y'' - y = 0$, $y(0) = 0$, $y(1) = 1.1752$ using cubic spline method with step size $h = \frac{1}{3}$.	CO2	PO1	10
	b)	Find an approximate solution of the integral equation $f(x) - \int_0^1 (x+t)f(t)dt = \frac{(9x-5)}{6}$ at $x = 0, \frac{1}{2}, 1$.	CO2	PO1	10
OR					
6	a)	Apply finite difference method to an approximate solution of $y'' + y + 1 = 0$, $0 \leq x \leq 1$ with $y(0) = 0$, $y(1) = 0$ by taking $h = 0.5$ and $h = 0.25$.	CO2	PO1	10
	b)	Solve the boundary value problem $y''(x) = y(x)$, $y(0) = 0$, $y(1) = 1.17$ by applying the shooting method with Runge-Kutta method of order 2 and step size $h = 0.5$.	CO2	PO1	10
UNIT - V					
7	a)	Find an approximate solution of $\nabla^2 u = 0$ with the conditions $u(0, y) = u(x, 0) = 0$, $u(1, y) = u(x, 1) = 1$ with $h = k = \frac{1}{3}$.	CO3	PO1	10
	b)	Solve the Poisson equation $\nabla^2 u = -81xy$, $0 < x, y < 1$ with the conditions $u(0, y) = 0$, $u(1, y) = 100$, $u(x, 0) = 0$, $u(x, 1) = 100$ with $h = k = \frac{1}{3}$.	CO2	PO1	10
