

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 20MA61ENME

Max Marks: 100

Course: Numerical Methods for Engineers

Instructions: 1. All questions have internal choices.
2. Missing data, if any, may be suitably assumed.

UNIT - 1			CO	PO	Marks
1	a)	Prove that the rate of convergence of Newton's method is second-order.	1	1	6
	b)	Apply Jacobi's method to approximate all eigenvalues and the corresponding eigenvectors of the matrix $A = \begin{bmatrix} 1 & -2 & 4 \\ -2 & 5 & -2 \\ 4 & -2 & 1 \end{bmatrix}$.	1	1	7
	c)	Solve non-linear system of equations $x^2 + xy - 10 = 0$; $y + 3xy^2 - 57 = 0$ near $x = 1.5$; $y = 3.5$ using the fixed-point iteration method. Carryout two iterations.	1	1	7
OR					
2	a)	Apply Given's method to reduce the following matrix into tridiagonal form $\begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix}$.	1	1	6
	b)	Apply Thomas algorithm to approximate the solution of the tridiagonal system $\begin{bmatrix} 4 & 3 & 0 & 0 \\ 2 & 2 & 3 & 0 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 2 & 5 \end{bmatrix} \begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \end{bmatrix} = \begin{bmatrix} 10 \\ 2 \\ -3 \\ 5 \end{bmatrix}$.	1	1	7
	c)	Apply Newton's method to find an approximate solution of the system of equations $x^2 + 3x + y = 5$ and $x^2 + 3y^2 = 4$ near $x = 0.5$ and $y = 0.5$. Perform two iterations.	1	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - 2															
3	a)	Approximate the derivative of the function $f(x) = e^x \sin(x)$ at the point $x = 1$ using the central finite difference formula and then refine the results using Richardson extrapolation starting with $h = 0.5, 0.25$.	1	1	6										
	b)	Find the volume under the surface $f(x, y) = e^{(x^2+y^2)}$ by evaluating the double integral $\int_0^1 \int_0^1 f(x, y) dx dy$ using Trapezoidal rule by taking three equal number of subintervals in both x and y directions.	1	1	7										
	c)	Obtain the cubic spline interpolation in $[2,3]$ for $f(x)$ from the data with $M(0) = 0, M(4) = 0$ and estimate $f(2.5)$	1	1	7										
OR															
4	a)	Obtain the piecewise linear interpolating polynomials for the function $f(x)$ using the given data and find $f(3)$ and $f(7)$.	1	1	6										
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>1</td><td>2</td><td>4</td><td>8</td></tr> <tr> <td>f(x)</td><td>3</td><td>7</td><td>21</td><td>73</td></tr> </table>	x	1	2	4	8	f(x)	3	7	21	73			
x	1	2	4	8											
f(x)	3	7	21	73											
	b)	Apply Romberg's integration method to compute $\int_4^{5.2} \log x dx$ with Simpson's rule by taking step size $h = 0.3$ and 0.6 .	1	1	7										
	c)	Evaluate $\int_{y=1}^{1.5} \int_{x=1}^2 \frac{dxdy}{x+y}$ using Simpson's rule with $h = 0.5$ along x -axis and $k = 0.25$ along y -axis.	1	1	7										
UNIT - 3															
5	a)	Derive the i). forward finite difference, backward finite difference and central finite difference approximations of $\frac{dy}{dx}$ and ii) central finite difference approximation of $\frac{d^2y}{dx^2}$.	1	1	5										
	b)	Apply Adams-Bashforth method to approximate the solutions of the ODE $y' = 1 + y^2$ at $x = 0.8$ subject to the conditions $y(0) = 0$, $y(0.2) = 0.2027$, $y(0.4) = 0.4228$; $y(0.6) = 0.6841$.	1	1	7										
	c)	Apply Runge-Kutta fourth order method to approximate the solution of the simultaneous differential equations $y' = 2y + u$, $y(0) = 1$; $u' = 3y + 4u$, $u(0) = 1$ at $x = 0.2$ with step size $h = 0.2$.	1	1	8										
OR															

6	a)	Reduce the differential equation $u''' + 2u'' + u' - u = \cos(t)$, $0 \leq t \leq 1$; $u(0) = 0$, $u'(0) = 1$, $u''(0) = 2$ in to first order initial value problems.	1	1	5
	b)	Apply Milne's method to approximate the solution of $x^2 \frac{dy}{dx} + xy = 1$ at $x = 1.400$ given $y(1.0) = 1.000$, $y(1.1) = 0.996$, $y(1.2) = 0.986$ and $y(1.3) = 0.972$.	1	1	5
	c)	Apply Runge-Kutta second order method to approximate the solution of simultaneous differential equations, $y' = u$, $y(0) = 1$; $u' = -4y - 2u$, $u(0) = 1$ at $x = 0.2$ with step size $h = 0.1$.	1	1	10
	UNIT - 4				
7	a)	Apply finite difference method to solve $u'' = u - 4xe^x$, in $0 \leq x \leq 1$, subject to the conditions $u(0) - u'(0) = -1$, and $u(1) + u'(1) = -e$ with $h = \frac{1}{3}$.	1	1	10
	b)	Find the numerical solutions of the boundary value problem $y'' + 2y' + y = x^2$, $y(0) = 0.2$, $y(1) = 0.8$ applying shooting method with step size $h = 0.5$ by taking initial guess $y'(0) = \alpha = 0.5$. Obtain its first correction.	1	1	10
	OR				
8	a)	Apply cubic spline method to solve the boundary value problem $x^2 y'' + xy' - y = 0$; $y(1) = 1$ and $y(2) = 0.5$, with step size $h = 0.5$.	1	1	10
	b)	Apply finite difference method to solve the integral equations $f(x) = \frac{15x - 2}{18} + \frac{1}{3} \int_0^1 (x+t) f(t) dt$ using Trapezoidal's rule by taking step size $h = 0.5$.	1	1	10
	UNIT - 5				
9	a)	Solve $u_{xx} + u_{yy} = 0$ for the region bounded by $1 \leq x \leq 2$, $0 \leq y \leq 1$, subject to the boundary conditions $u(1, y) = \ln(y^2 + 1)$; $u(x, 0) = 2 \ln(x)$; $u(2, y) = \ln(y^2 + 4)$ and $u(x, 1) = \ln(x^2 + 1)$ with $h = k = 1/3$.	1	1	10
	b)	Solve Poisson's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -10(x^2 + y^2 + 10)$ for the region bounded by $0 \leq x, y \leq 3$, subject to the conditions $u(0, y) = u(x, 0) = u(3, y) = u(x, 3) = 0$ with $h = k = 1$.	1	1	10
	OR				

	10	a)	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = xe^y, 0 < x < 2, 0 < y < 1$ subject to the boundary conditions $u(x, 0) = x, u(0, y) = 0, u(2, y) = 2e^y$ and $u(x, 1) = xe$ with step size $\frac{2}{3}$ and $\frac{1}{3}$ along x and y directions respectively.	1	1	10
		b)	Solve $\nabla^2 u = 0$ over $R: \{(0,1) \times (0,1)\}$ with $h = k = \frac{1}{3}$ subject to the conditions $u(x, 1) = 1, u(1, y) = 1, u(x, 0) = 0$ and $u(0, y) = 0$.	1	1	10

B.M.S.C.E. - EVEN SEM 2024-25