

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Program	: B. E	Semester	: VI
Branch	: Institutional Elective	Duration	: 03 Hrs.
Course Code	: 23MA6OENME	Max. Marks	: 100
Course Name	: Numerical Methods for Engineers		

Instructions: 1. Each unit has an internal choice; answer one complete question from each unit.
 2. Missing data, if any, may be suitably assumed

UNIT - 1			CO	PO	Marks										
1	a)	Prove that the rate of convergence of Newton's method is second order.	1	1	6										
	b)	Approximate all eigenvalues and corresponding eigenvectors of the matrix $A = \begin{bmatrix} 1 & \sqrt{2} & 4 \\ \sqrt{2} & 3 & \sqrt{2} \\ 4 & \sqrt{2} & 1 \end{bmatrix}$ using Jacobi's method.	1	1	7										
	c)	Solve non-linear equations $x^2 + xy - 10 = 0$; $y + 3xy^2 - 57 = 0$; near $x = 1.5$; $y = 3.5$ using fixed point iteration method. Perform two iterations.	1	1	7										
OR															
2	a)	Apply Given's method to reduce the matrix $\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix}$ into tri-diagonal form.	1	1	6										
	b)	Solve the tri-diagonal system $\begin{bmatrix} 1 & -2 & & & \\ 2 & 4 & 5 & & \\ & 8 & -9 & 2 & \\ & & 6 & 3 & 4 \\ & & & 6 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \\ 5 \end{bmatrix}$ using the Thomas algorithm.	1	1	7										
	c)	Apply Newton Raphson method to approximate the real root of $\ln(x^2 + y) - 1 + y = 0$, $\sqrt{x} + xy = 0$ near $x = 2.4$, $y = -0.6$. Perform two iterations.	1	1	7										
UNIT - 2															
3	a)	Obtain the piecewise linear interpolation for $f(x)$ from the following data and estimate $f(3)$ and $f(1.5)$.	1	1	6										
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>x</td><td>1</td><td>2</td><td>4</td><td>8</td></tr> <tr> <td>$f(x)$</td><td>3</td><td>7</td><td>21</td><td>73</td></tr> </table>	x	1	2	4	8	$f(x)$	3	7	21	73			
x	1	2	4	8											
$f(x)$	3	7	21	73											

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Apply Romberg's integration method along with Trapezoidal rule to compute $\int_0^1 \left(1 + \frac{\sin x}{x}\right) dx$ with $h = 0.25, 0.125$.	1	1	7
	c)	Apply Sterling's central difference interpolation formula to compute y at $x = 0.25$ from the following data:	1	1	7
OR					
4	a)	Approximate the derivative of the function $f(x) = e^x \sin(x)$ at the point $x = 1$ using the centered difference formula and then refine the results using Richardson extrapolation starting with $h = 0.5, 0.25, 0.125$.	1	1	6
	b)	Find the volume under the surface $f(x, y) = e^{(x^2+y^2)}$ by evaluating the double integral $\int_0^1 \int_0^1 f(x, y) dx dy$ using Trapezoidal rule by taking three equal subintervals in both x and y directions.	1	1	7
	c)	Compute $f(1.5)$ and $f(2.5)$ using cubic spline interpolation from the data given below with $M(1) = 0$ and $M(4) = 0$.	1	1	7
UNIT - 3					
5	a)	Verify the existence and uniqueness of the solution of the initial value problem $y' = y^{1/3}$, $y(0) = 0$ over the domain i) $0 \leq t \leq 2$, $0 \leq y \leq 1$, ii) $0 \leq t \leq 2$, $c \leq y \leq d$, $0 < c < d$. If so, find the Lipschitz constant for each case.	1	1	5
	b)	The differential equations that govern the prey and predator population are given by $\frac{dy(t)}{dt} = 3y(t) + 2z(t); \frac{dz(t)}{dt} = 4y(t) + z(t); y(0) = 1, z(0) = 1.$ Applying matrix method find the prey $x(t)$ and predator $y(t)$ population.	1	1	6
	c)	Apply RK4 to solve $y' = 2y + u$, $y(0) = 1$; $u' = 3y + 4u$, $u(0) = 1$ at $x = 0.2$ with step size $h = 0.2$.	1	1	9
OR					
6	a)	Derive the forward difference, backward difference and central difference of $\frac{dy}{dx}$ and central difference approximation of $\frac{d^2 y}{dx^2}$.	1	1	4
	b)	The differential equations that govern the prey and predator population are given by $\frac{dx(t)}{dt} = -2x(t) + 3y(t); \frac{dy(t)}{dt} = -x(t) + 2y(t); x(2) = 2, y(2) = 4.$ Applying matrix method find the prey $x(t)$ and predator $y(t)$ population.	1	1	6

	c)	Using RK2, approximate the solution of the system of the initial value problems $\frac{dy}{dx} = -2y + 4e^{-x}$, $y(0) = 2$; $\frac{dz}{dx} = -\frac{yz^2}{3}$, $z(0) = 4$ with step size $h = 0.1$ at $x = 0.2$.	1	1	10
		UNIT - 4			
7	a)	Apply cubic spline method to solve the boundary value problem $x^2 y'' + xy' - y = 0$; $y(1) = 1$ and $y(2) = 0.5$, with step size $h = 0.5$	1	1	10
	b)	Apply finite difference method to solve the boundary value problem $u'' + \frac{4x}{1+x^2} u' + \frac{2}{1+x^2} u = 0$, in $0 \leq x \leq 1$, subject to the conditions $u(0) = 1$, $u(1) = \frac{1}{2}$ with $h = \frac{1}{3}$.	1	1	10
		OR			
8	a)	Find the numerical solutions of the boundary value problem $y'' + 2y' + y = x^2$, $y(0) = 0.2$, $y(1) = 0.8$ using shooting technique with step size $h = 0.5$ with initial guess $y'(0) = \alpha = 0.5$. Obtain its first correction.	1	1	10
	b)	Apply finite difference method along with Trapezoidal rule to solve the integral equations $f(x) = \frac{15x-2}{18} + \frac{1}{3} \int_0^1 (x+t) f(t) dt$ taking step size $h = \frac{1}{3}$.	1	1	10
		UNIT - 5			
9	a)	Compute the numerical solution of one-dimensional heat equation $u_t = u_{xx}$ with $u(t,0) = 0 = u(t,1)$ and $u(0,x) = \sin(\pi x)$ up to five time levels with step size $h = 0.2$ along the x -directions.	1	1	10
	b)	Solve Poisson's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -10(x^2 + y^2 + 10)$ for the region bounded by $0 \leq x, y \leq 3$, subject to the conditions $u(0,y) = u(x,0) = u(3,y) = u(x,3) = 0$ with $h=k=1$.	1	1	10
		OR			
10	a)	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ for the region bounded by $0 \leq x \leq 1$, $0 \leq y \leq 1$ with $h = k = 1/3$ subject to the boundary conditions $u(0,y) = u(x,0) = u(1,y) = u(x,1) = 0$.	1	1	10
	b)	Solve the wave equation $u_{tt} = 4u_{xx}$ taking $h = 1$ and $k = 1/2$ up to $t = 2$ with the boundary conditions $u(0,t) = u(4,t) = 0$; $u_t(x,0) = 0$ and $u(x,0) = x(4-x)$.	1	1	10
