

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2024 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 23MA6OESFE

Max Marks: 100

Course: Mathematical Statistics for Engineers

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																					
1	a)	Discuss the four levels of measurement scales. Give examples of each and explain in detail.	<i>CO1</i>	<i>PO1</i>	06																					
	b)	An incomplete frequency distribution is given as follows:	<i>CO2</i>	<i>PO1</i>	07																					
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th>Variables</th> <th>Frequency</th> <th>Variables</th> <th>Frequency</th> </tr> <tr> <td>10-20</td> <td>12</td> <td>50-60</td> <td>Y</td> </tr> <tr> <td>20-30</td> <td>30</td> <td>60-70</td> <td>25</td> </tr> <tr> <td>30-40</td> <td>X</td> <td>70-80</td> <td>18</td> </tr> <tr> <td>40-50</td> <td>65</td> <td>Total</td> <td>229</td> </tr> </table> <p>Given that the median value is 46, determine the value of X and Y.</p>	Variables	Frequency	Variables	Frequency	10-20	12	50-60	Y	20-30	30	60-70	25	30-40	X	70-80	18	40-50	65	Total	229				
Variables	Frequency	Variables	Frequency																							
10-20	12	50-60	Y																							
20-30	30	60-70	25																							
30-40	X	70-80	18																							
40-50	65	Total	229																							
	c)	In a school, the intelligent students are admitted to batch A of a class and the others are admitted to batch B. The students in the two batches are aged as follows. Compare their average age and variations.	<i>CO2</i>	<i>PO2</i>	07																					
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Age (years)</td> <td>10</td> <td>11</td> <td>12</td> <td>13</td> <td>14</td> <td>15</td> </tr> <tr> <td>students (Batch A)</td> <td>14</td> <td>20</td> <td>11</td> <td>2</td> <td>2</td> <td>1</td> </tr> <tr> <td>students (Batch B)</td> <td>2</td> <td>12</td> <td>11</td> <td>13</td> <td>4</td> <td>2</td> </tr> </table>	Age (years)	10	11	12	13	14	15	students (Batch A)	14	20	11	2	2	1	students (Batch B)	2	12	11	13	4	2			
Age (years)	10	11	12	13	14	15																				
students (Batch A)	14	20	11	2	2	1																				
students (Batch B)	2	12	11	13	4	2																				
UNIT - II																										
2	a)	3% of the product produced by a machine is found to be defective. Find the probability that first defective occurs in the (i) 5 th item inspected (ii) first five inspected Also, compute mean and variance of X.	<i>CO1</i>	<i>PO1</i>	06																					
	b)	A warehouse receives orders for a particular product on a regular basis. When an order is placed, customers can order 1, 2, 3 or 4 units of the product. Historical data suggests that the size of any given order is equally likely to be of any of the four sizes. Let X denote size of an order. (i) Find the mean and standard deviation of customer order size. (ii) Find the probability that a customer orders at least two units.	<i>CO1</i>	<i>PO1</i>	07																					
	c)	Obtain the limiting probability density function of t-distribution when $n \rightarrow \infty$.	<i>CO1</i>	<i>PO1</i>	07																					
		OR																								

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	3	a)	The daily consumption of diesel in a petrol bunk is in excess of 20,000 liters is a gamma variate with parameters $\alpha = 2$, $\lambda = 1/10,000$. The bunk has a daily stock of 30,000 liters. Find the probability that the stock is inadequate on a particular day.	CO1	PO2	06
		b)	Lots of 40 components each are called acceptable if they contain no more than 3 defectives. The procedure for sampling the lot is to select 5 components at random (without replacement) and to reject the lot if a defective is found. What is the probability that exactly one defective is found in the sample if there are 3 defectives in the entire lot? Also, find the expected value and the variance of the number of defectives in the sample.	CO2	PO2	07
		c)	Derive an expression for the mean and variance of a χ^2 -distribution	CO1	PO1	07
UNIT - III						
4	a)		The weights of 1500 ball bearings are normally distributed with a mean of 635 gms and standard deviation of 1.36gms. If 300 random samples of size 36 are drawn from this population, determine the mean and standard deviation of the sampling distribution of means if sampling is done (i) with replacement (ii) without replacement.	CO1	PO1	06
	b)		Suppose that it is known that the amount of uranium dug in a uranium mine during one week is a random variable with mean 20 kg. (i) Apply Markov's inequality to find a bound on the probability that week's production is at least 24kg? (ii) If the variance of the amount of uranium dug in the mine equals 16. Applying Chebyshev's inequality to find a lower bound on the probability that week's production will be between 8kg and 32kg?	CO2	PO2	07
	c)		A continuous random variable X has the following probability distribution $f(x) = 3xe^{-5x}$, $x > 0$ (i) Find the moment generating function for X . (ii) Find the mean and variance for X .	CO2	PO2	07
UNIT - IV						
5	a)		The number of traffic accidents in Berkeley follows a Poisson distribution with parameter λ , California in 10 randomly chosen no rainy days in 1998 is as follows: 4, 0, 6, 5, 2, 1, 2, 0, 4, 3. Find the maximum likelihood estimator of parameter λ .	CO1	PO1	06
	b)		Suppose that when the value μ is transmitted at location A then the value received at location B is normal with mean μ and variance σ^2 but with σ^2 being unknown. If 9 successive values are, 5, 8.5, 12, 15, 7, 9, 7.5, 6.5, 10.5, compute a 95% confidence interval for μ .	CO2	PO2	07
	c)		Suppose X_1, X_2, \dots, X_n are independent $Uniform[0, \theta]$ random variables. Let $\hat{\theta} = \frac{2(X_1 + X_2 + \dots + X_n)}{n}$ be an estimator of θ . Find the bias, variance and risk of $\hat{\theta}$.	CO1	PO1	07

* * * * *