

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Institutional Elective

Course Code: 21MA7IENMT

Course: NUMBER THEORY

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. All questions have internal choices.
2. Missing data, if any, may be suitably assumed.

			UNIT - 1			CO	PO	Marks
1	a)	State and prove Chinese remainder theorem.				1	1	6
	b)	If a cock is worth five coins, a hen three coins, and three chicks together one coin, how many cocks, hens, and chicks, totaling 100, can be bought for 100 coins?				1	1	7
	c)	Solve the polynomial congruence $x^3 - 5x + 1 \equiv 0 \pmod{27}$.				1	1	7
OR								
2	a)	Write any six properties of congruence.				1	1	6
	b)	Find the smallest positive integer n such that $3^2 / n$, $4^2 / n+1$ and $5^2 / n+2$.				1	1	7
	c)	Show that $f_5 = 2^{2^5} + 1$ is divided by 641.				1	1	7
UNIT - 2								
3	a)	Define each of the following with an example i) Perfect prime, ii) Mersenne prime, iii) Dirichlet Product.				2	1	6
	b)	Compute i) $(\tau * \sigma)(4)$, ii) $\phi(1976)$, iii) $\mu(945)$, iv) $\tau(6120)$.				2	1	7
	c)	Find the remainder when 3^{256} is divided by 100.				2	1	7
OR								
4	a)	Define σ , ϕ , τ functions and compute σ , ϕ and τ for $n=3000$.				2	1	6
	b)	Define a multiplicative function. If f and g are both multiplicative, then prove that $f * g$ is multiplicative.				2	1	7
	c)	State Euler's theorem. Find the remainder when 245^{1040} is divided by 18.				2	1	7
UNIT - 3								
5	a)	Solve the congruence $11x^3 \equiv 2 \pmod{23}$ using indices to base 5.				3	1	6
	b)	Apply corollary of Lucas' theorem to show that $n=127$ is a prime by choosing $x=3$.				3	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Using the fact that 5 is a primitive root modulo 54, find the remaining incongruent primitive roots.	3	1	7
		OR			
6	a)	Show that 2 is not a primitive root modulo any Fermat prime f_n , where $n \geq 2$.	3	1	6
	b)	Using Lucas' theorem, show that $n = 773$ is a prime by choosing $x = 3$	3	1	7
	c)	Solve the congruence $2x^4 \equiv 5 \pmod{13}$ using indices to base 2.	3	1	7
		UNIT - 4			
7	a)	Solve the quadratic congruence $3x^2 - 4x + 7 \equiv 0 \pmod{13}$.	4	1	6
	b)	Using the generalized law of quadratic reciprocity, evaluate Jacobi symbol $(221/399)$.	4	1	7
	c)	Define continued fraction and represent finite continued fraction $[1; 2, 3, 4, 5]$ as a rational number.	4	1	7
		OR			
8	a)	Determine whether 10 and 7 are quadratic residues of 13.	4	1	6
	b)	Write the properties of Legendre symbol. Compute Jacobi symbol $(15625/17)$.	4	1	7
	c)	Find the infinite continued fraction expansion for 'e'.	4	1	7
		UNIT - 5			
9	a)	Describe briefly about Catalan's Conjecture.	5	1	6
	b)	Describe sum of four square and write 29,791 as the sum of four square.	5	1	7
	c)	Using the fact that $1 + \sqrt{2}$ is the least solution of $x^2 - y^2 = -1$, find a new solution.	5	1	7
		OR			
10	a)	Describe Fermat's last theorem with an example.	5	1	6
	b)	Using the fact that $3 + 2\sqrt{2}$ yields the least solution of $x^2 - y^2 = 1$, find two new solutions.	5	1	7
	c)	Write 64,125 as sum of four square.	5	1	7
