

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Institutional Elective

Course Code: 21MA8IELIA

Course: Linear Algebra

Semester: VIII

Duration: 3 hrs.

Max Marks: 100

Date: 06.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Let R^+ be the set of all positive real numbers. Define vector addition as $u+v=uv \forall u, v \in R^+$ and scalar multiplication by $k.u=u^k \forall u \in R^+, k \in R$. Show that R^+ is vector space over the field of numbers.			CO1	PO1	6
		b)	Consider the vector space $P_2(t)$ of polynomials of degree ≤ 2 . The set $S = \{p_1, p_2, p_3\}$ where $p_1(t)=t+1$, $p_2(t)=t-1$ and $p_3(t)=(t-1)^2$ form a basis S of $P_2(t)$. Prove that given polynomials are independent and hence find the coordinate vector of the polynomial $v=t^2-3t+2$.			CO1	PO1	7
		c)	Find the basis and dimension of the row space and the column space of the matrix $\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}.$			CO1	PO1	7
			UNIT - II					
2	a)		Find the matrix representation with respect to the bases $B = \{(1,2), (2,0)\}$ and $S = \{(1,1,0), (0,1,1), (0,1,-1)\}$ in R^2 and R^3 respectively of the linear transformation $T: R^2 \rightarrow R^3$ defined by $T(a,b) = (4a+b, 3a, 2a-b)$.			CO1	PO1	6
	b)		The linear transformation $T: R^3 \rightarrow R^4$ is defined by $T(x,y,z) = (x+2y+z, 2x+4y+2z, 3x+7y+6z, 2x+5y+5z)$. Find the bases for the image space and the null space and hence verify Rank-Nullity theorem.			CO1	PO1	7

	c)	Define singular and non-singular transformations. Let $G: R^2 \rightarrow R^2$ be the linear transformation defined by $F(x, y) = (2x+y, 3x+2y)$. Show that G is non-singular and hence find F^{-1} if it exists.	CO1	PO1	7
		UNIT - III			
3	a)	Apply Cayley-Hamilton theorem to find A^{-1} of the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}.$	CO2	PO1	6
	b)	Obtain the Eigen space for the linear transformation defined by $T(x, y, z) = (2x+y+z, y-z, 2y+4z)$.	CO2	PO1	7
	c)	Find the characteristic and minimal polynomial of the matrix $A = \begin{bmatrix} 4 & -1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}.$	CO2	PO1	7
		OR			
4	a)	Find the Eigen values and corresponding Eigen vectors for the linear transformation $T: R^3 \rightarrow R^3$ defined by $T(a, b, c) = (2a-c, 2a+b-2c, -a+2c)$.	CO2	PO1	6
	b)	Find the modal matrix P such that the matrix $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$ is diagonalizable and hence find A^6 .	CO2	PO1	7
	c)	Determine all possible Jordan canonical form for the linear operator $T: V \rightarrow V$ whose characteristic polynomial is $f(t) = (t+7)^3(t-2)$. In each case find the minimal polynomial.	CO2	PO1	7
		UNIT - IV			
5	a)	Find a basis of the subspace W of R^4 that is orthogonal to $u_1 = (1, -1, 3, 2)$ and $u_2 = (3, -4, 6, 1)$.	CO3	PO1	6
	b)	Construct an orthogonal matrix P whose first row is $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ in R^3 .	CO3	PO1	7

	c)	Find the matrix of the inner product $\langle f, g \rangle = \int_{-1}^1 f(t)^* g(t) dt$ with respect to the basis $S = \{-1, t, -t^2\}$ in the polynomial space $P_2(t)$, where the matrix of the inner product is defined as $A = [a_{ij}] = \langle f_i, f_j \rangle$.	CO3	PO1	7
		OR			
6	a)	Solve the system of equations $AX = b$ by the method of least squares where $A = \begin{bmatrix} 1 & -3 \\ 2 & 6 \\ 7 & -3 \\ 3 & 4 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix}$ and hence find the least square error.	CO3	PO1	10
	b)	Obtain the QR factorization of the matrix $A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$.	CO3	PO1	10
		UNIT - V			
7	a)	Find the matrix of transformation that reduces the quadratic form $x^2 + 3y^2 + 3z^2 - 2yz$ into canonical form and hence discuss its nature.	CO3	PO1	10
	b)	Find the singular value decomposition of $A = \begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix}$.	CO3	PO1	10
