

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 23ME3PCETD / 22ME3PCETD

Max Marks: 100

Course: Engineering Thermodynamics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Use of thermodynamic data handbook is permitted
 3. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define the following. (i) Closed and open system, (ii) Thermodynamic equilibrium, (iii) Intensive and extensive property, (iv) Zeroth Law of Thermodynamics.	CO1	PO1	08
	b)	What is quasistatic process and what is the significance of quasistatic process.	CO1	PO1	04
	c)	A mass of gas is compressed in a quasi-static process from 80 kPa, 0.1 m ³ to 0.4 MPa, 0.03 m ³ . Assuming that the pressure and volume are related by $Pv^n = \text{constant}$, find the work done by the gas system.	CO1	PO2	08
OR					
2	a)	Derive an expression for displacement work for isothermal and polytropic processes.	CO1	PO1	08
	b)	Compare the heat and work transfer.	CO1	PO1	04
	c)	If a gas of volume 6000 cm ³ and at pressure of 100 kPa is compressed quasistatically according to $PV^2 = \text{constant}$ until the volume becomes 2000 cm ³ , determine (i) final pressure and (ii) the work transfer.	CO1	PO2	08
UNIT - II					
3	a)	State the first law of thermodynamic for cyclic and non-cyclic process.	CO2	PO1	06
	b)	Show that energy is a property of the system.	CO2	PO1	06
	c)	A gas undergoes a thermodynamic cycle consisting of the following processes: (i) Process 1-2: Constant pressure $P = 1.4$ bar, $V_1 = 0.028$ m ³ , $W_{12} = 10.5$ kJ.	CO2	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		(ii) Process 2-3: Compression with $PV = \text{constant}$, $U_3 = U_2$ (iii) Process 3-1: Constant volume, $U_1 - U_3 = - 26.4 \text{ kJ}$. There are no significant changes in KE and PE. (a) Sketch the cycle on a $P-v$ diagram. (b) Calculate the net work for the cycle in kJ. (c) Calculate the heat transfer for process 1-2 (d) Show that $\sum Q_{\text{cycle}} = \sum W_{\text{cycle}}$.			
		OR			
4	a)	Reduce the steady flow energy equation for the following devices with suitable assumptions: (i) Turbine. (ii) Throttling device. (iii) Nozzle.	CO2	PO1	06
	b)	What is PMM1? Why it is impossible?	CO2	PO1	04
	c)	Air flows steadily at the rate of 0.5 kg/s through an air compressor, entering at 7m/s velocity, 100 kPa pressure, and 0.95 m^3/kg volume, and leaving at 5 m/s, 700 kPa, and 0.19 m^3/kg . The internal energy of the air leaving is 90 kJ/kg greater than that of the air entering. Cooling water in the compressor jackets absorbs heat from the air at the rate of 58 kW. Compute the rate of shaft work input to the air in kW.	CO2	PO2	10
		UNIT – III			
5	a)	Show that Kelvin-Planck and Clausius statements of second law of thermodynamics are equivalent.	CO3	PO1	08
	b)	Show that COP of heat pump is greater than COP of refrigerator by unity.	CO3	PO1	04
	c)	A reversible heat engine operates between two reservoirs at temperatures of 600°C and 40°C. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 40°C and - 20°C. The heat transfer to the heat engine is 2000 kJ and the network output of the combined engine refrigerator plant is 360 kJ. Evaluate the heat transfer to the refrigerant and the net heat transfer to the reservoir at 40°C.	CO3	PO2	08
		OR			
6	a)	State and prove Clausius inequality.	CO3	PO1	08
	b)	Explain principle of increase of entropy of universe.	CO3	PO1	04
	c)	One kg of ice at - 5°C is exposed to the atmosphere which is at 20°C. The ice melts and comes into thermal equilibrium with the atmosphere. (i) Determine the entropy increase of the universe.	CO3	PO2	08
		UNIT – IV			
7	a)	Derive an expression for entropy change for ideal gas during polytropic process.	CO4	PO1	06

		b)	Explain universal and particular gas constants.	CO4	PO1	04
		c)	A certain gas with $C_p = 1.968 \text{ kJ/kgK}$ and $C_v = 1.507 \text{ kJ/kgK}$ in a constant volume chamber of 0.3m^3 capacity has a mass of 2 kg at 5°C . The heat is transferred to the gas until the temperature is 100°C . find (i) Molecular weight of gas (ii) Gas constant, (iii) Work done, (iv) Heat transferred, (v) Change in internal energy, (vi) Change in enthalpy and (vii) Change in entropy.	CO4	PO2	10
			OR			
	8	a)	Explain the following: (i) Law of corresponding states. (ii) Compressibility factor. (iii) Reduced properties.	CO4	PO1	06
		b)	Differentiate between ideal and real gases.	CO4	PO1	04
		c)	One kg of CO_2 has a volume of 1m^3 at 100°C . compute the pressure by: (i) Van der Waal's equation. (ii) Perfect gas equation.	CO4	PO2	10
			UNIT - V			
	9	a)	With the help of $T-h$ diagram explain the following terms: (i) Sensible heat of water. (ii) Latent heat of vaporization. (iii) Dryness fraction. (iv) Enthalpy of wet steam. (v) Enthalpy of superheat steam.	CO5	PO1	10
		b)	Steam initially at 1.5 MPa , 300°C expands reversibly and adiabatically in a steam turbine to 40°C . determine the ideal work output of the turbine per kg of steam.	CO5	PO2	10
			OR			
	10	a)	Explain the simple Rankine cycle with the help of schematic diagram and $h-s$ diagrams for ideal case and obtain an expression for cycle efficiency.	CO5	PO2	10
		b)	A simple Rankine cycle works between pressure of 28 bar and 0.06 bar, the initial condition of steam being dry saturated. Calculate the cycle efficiency.	CO5	PO2	10
