

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 19ME3DCFME

Max Marks: 100

Course: Fluid Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With a sketch, explain the variation of shear stress of different kind of fluids with reference to velocity gradient.			<i>CO1</i>	<i>PO1</i>	06
		b)	The velocity of distribution for flow over a plate is given by $u = 2y - y^2$, where u is the velocity in m/s at a distance ' y ' meters above the plate. Determine the velocity gradient and shear stress at the boundary and 1.5 from it. Take the dynamic viscosity of fluid as 0.9 N s/m^2 .			<i>CO1</i>	<i>PO2</i>	08
		c)	State and prove the Pascal's law.			<i>CO1</i>	<i>PO2</i>	06
			UNIT - II					
	2	a)	Determine the total pressure and center of pressure for an vertical plane submerged in liquid.			<i>CO1</i>	<i>PO1</i>	06
		b)	A circular plate 1.5 m diameter is submerged in water, with its greatest and least depths below the surface being 2 m and 0.75 m respectively. Determine: (i) The total pressure on one face of the plate, and (ii) The position of the centre of pressure.			<i>CO1</i>	<i>PO2</i>	06
		c)	Define Metacentric height. Prove that the height between the point of buoyancy (B) and point of meta center (M) is given by $BM = 1/V$.			<i>CO1</i>	<i>PO1</i>	08
			UNIT - III					
	3	a)	Derive the continuity equation in 3D Cartesian coordinate system			<i>CO2</i>	<i>PO1</i>	08
		b)	Find the velocity and acceleration at a point (1, 2, 3) after 1 sec. for a three dimensional flow given by $u = yz + t$, $v = xz - t$, $w = xy \text{ m/s}$.			<i>CO2</i>	<i>PO2</i>	08
		c)	Explain the methods of describing fluid Motion.			<i>CO2</i>	<i>PO2</i>	04
			OR					

	4	a)	A horizontal venturimeter with inlet diameter 200 mm and throat diameter 100 mm is used to measure the flow of water. The pressure at inlet is 0.18 N/mm ² and the vacuum pressure at the throat is 280 mm of mercury. Find the rate of flow. Considering the value of C_d is 0.98.	CO2	PO2	06
		b)	State and prove Bernoulli's equation and also list the assumptions made.	CO2	PO1	07
		c)	Water is flowing through a pipe of 5 cm diameter under a pressure of 29.43 N/cm ² (gauge) and with mean velocity of 2.0 m/s. Find the total head or total energy per unit weight of the water at a cross-section, which is 5 m above the datum line.	CO2	PO2	07
			UNIT - IV			
	5	a)	Prove that the maximum velocity in a circular pipe for viscous flow is equal to two times the average velocity of the flow.	CO2	PO1	10
		b)	A horizontal pipe of diameter 500mm is suddenly contracted to a diameter of 250mm. The pressure intensities in the large and smaller pipe is given as 13.724 N/cm ² and 11.772 N/cm ² respectively. Find the loss of head due to contraction if $C_c = 0.62$. Also determine the rate of flow of water.	CO2	PO2	10
			OR			
	6	a)	Derive force exerted by jet strikes the curved plate at one end tangentially when the plate is symmetrical curved plate	CO2	PO1	08
		b)	Explain the force exerted by a flowing fluid on a stationary body in terms Lift an drag.	CO2	PO2	08
		c)	A prototype automobile has an overall drag coefficient of 0.35. Compute the total drag as it moves at 25 m/s through still air at 25°C. The maximum projected frontal area is 2.50 m ² .	CO2	PO2	04
			UNIT - V			
	7	a)	List the uses of 'Dimensional Homogeneity'.	CO3	PO1	04
		b)	Define and write significance of; i) Reynolds number, ii) Mach Number, iii) Weber's number, and iv) Euler's number	CO3	PO1	08

	c)	<p>Albert Einstein is pondering how to write his equation. He knows that energy E is a function of mass m and speed of light c, but he does not know the functional relationship. Pretend that Albert knows nothing about dimensional analysis, you help Albert come up with his equation.</p> <p>A liquid of density ρ and viscosity μ flows by gravity through a hole of diameter d in the bottom of a tank of diameter D (Figure.1). At the start of the experiment, the liquid surface is at height h above the bottom of the tank, as sketched. The liquid exits the tank as a jet with average velocity V straight down as also sketched. Using dimensional analysis, generate a dimensionless relationship for V as a function of the other parameters in the problem. Identify any established non dimensional parameters that appear in your result. (Hint: There are three length scales in this problem. Choose h, ρ and g as repeating variables)</p>	CO3	PO2	08
--	----	--	-----	-----	-----------

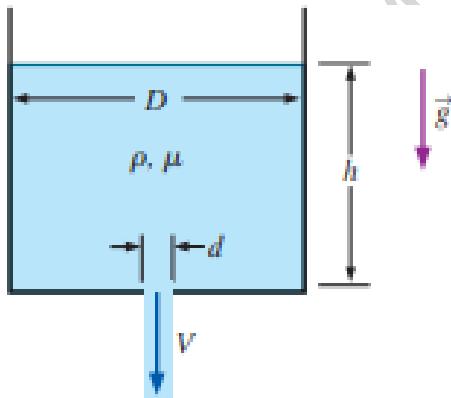


Figure.1
