

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 19ME3DCFME

Max Marks: 100

Course: Fluid Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With the help of a sketch explain the variation of shear stress with velocity gradient.	CO1	PO1	06
	b)	The velocity distribution for the flow over a plate is given by $u = 2y - y^2$, where u is the velocity in m/s at a distance y meters above the plate. Determine the velocity gradient and shear stress at the boundary and 1.5 m from it. Take the dynamic viscosity of fluid as 0.9 N-s/m ² .	CO1	PO2	08
	c)	State and prove 'Pascal's law'.	CO1	PO1	06
OR					
2	a)	Explain briefly the following: (i) Atmospheric pressure, (ii) Gauge pressure, (iii) Vacuum pressure, and (iv) Absolute pressure.	CO1	PO2	06
	b)	With sketch explain working of, (i) Piezometer and (ii) U-tube manometer.	CO1	PO2	06
	c)	The water in a tank is pressurized by air, and the pressure is measured by a multifluid manometer as shown in Fig. 1. The tank is located on a mountain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. Determine the air pressure in the tank if $h_1 = 0.1$ m, $h_2 = 0.2$ m, and $h_3 = 0.35$ m. Take the densities of water, oil, and mercury to be 1000 kg/m ³ , 850 kg/m ³ , and 13,600 kg/m ³ , respectively.	CO1	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

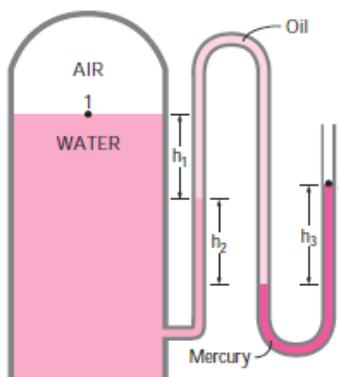


Figure.1

UNIT - II					
3	a)	Determine the total pressure and center of pressure for a vertical plane submerged in liquid.	CO1	PO1	06
	b)	A circular plate 1.5 m diameter is submerged in water, with its greatest and least depths below the surface being 2 m and 0.75 m respectively. Determine: (i) The total pressure on one face of the plate, and (ii) The position of the centre of pressure.	CO1	PO2	06
	c)	Define Metacentric height. Prove that Metacentric height is given by $MG=BM-GM$ where, 'MG' is metacentric height, 'BM' is the distance between metacenter and center of buoyancy, 'GM' is the distance between center of buoyancy and centre of gravity.	CO1	PO1	08
OR					
4	a)	Derive an expression for the depth of centre of pressure from free surface of liquid of an inclined plane surface submerged in the liquid.	CO1	PO1	08
	b)	A 1 m wide and 1.5 m deep rectangular plane surface lies in water in such a way that its plane makes an angle of 30° with the free water surface. Determine the total pressure and position of centre of pressure when the upper edge is 0.75 m below the free water surface.	CO1	PO2	06
	c)	A crane is used to lower weights into the sea (density = 1025 kg/m^3) for an underwater construction project (Fig.2). Determine the tension in the rope of the crane due to a rectangular $0.4\text{m} \times 0.4\text{m} \times 3\text{m}$ concrete block (density = 2300 kg/m^3) when it is (i) suspended in the air and (ii) completely immersed in water.	CO1	PO2	08
<p style="text-align: center;">Figure.2</p>					
UNIT - III					
5	a)	Derive the continuity equation in 3D Cartesian coordinate system.	CO2	PO1	08
	b)	Find the velocity and acceleration at a point (1, 2, 3) after 1 sec for a three-dimensional flow which is given by $u = yz + t$, $v = xz - t$, and $w = xy \text{ m/s}$.	CO2	PO2	08
	c)	Explain the different methods to describe the fluid motion.	CO2	PO2	04
OR					
6	a)	A horizontal venturimeter with inlet diameter 200 mm and throat	CO2	PO2	08

		diameter 100 mm is used to measure the flow of water. The pressure at inlet is 0.18 N/mm ² and the vacuum pressure at the throat is 280 mm of mercury. Find the rate of flow. The value of C_d may be taken as 0.98.			
	b)	State and prove Bernoulli's equation and also list the assumptions made.	CO2	PO1	06
	c)	Water is flowing through a pipe of 5 cm diameter under a pressure of 29.43 N/cm ² (gauge) and with mean velocity of 2 m/s. Find the total head or total energy per unit weight of the water at a cross-section, which is 5 m above the datum line.	CO2	PO2	06
UNIT - IV					
7	a)	Prove that the maximum velocity in a circular pipe for viscous flow is equal to two times the average velocity of the flow.	CO2	PO1	10
	b)	A horizontal pipe of diameter 500 mm is suddenly contracted to a diameter of 250 mm. The pressure intensities in the large and smaller pipe are given as 13.7 N/cm ² and 11.7 N/cm ² respectively. Find the loss of head due to contraction if $C_d = 0.62$. Also determine the rate of flow of water.	CO2	PO2	10
OR					
8	a)	Derive force exerted by jet strikes the curved plate at one end tangentially when the plate is symmetrical curved plate.	CO2	PO1	08
	b)	Explain the force exerted by a flowing fluid on a stationary body in terms lift and drag.	CO2	PO2	08
	c)	A prototype automobile has an overall drag coefficient of 0.35. Compute the total drag as it moves at 25 m/s through still air at 25°C. The maximum projected frontal area is 2.50 m ² .	CO2	PO2	04
UNIT - V					
9	a)	Discuss the Rayleigh's method of dimensional analysis.	CO3	PO1	06
	b)	List the uses of Dimensional Homogeneity.	CO3	PO1	04
	c)	Using Buckingham's π -theorem, show that the velocity through a circular orifice is given by	CO3	PO2	10
		$V = \sqrt{2gH} \phi \left[\frac{D}{H}, \frac{\mu}{\rho VH} \right]$ where, H = Head, D = Diameter of the orifice, μ = Co-efficient of viscosity, ρ = density, and g = Acceleration due to gravity.			
OR					
10	a)	Discuss the significance of, i) Reynolds number ii) Mach Number, iii) Weber's number, iv) Euler's number, and v) Knudsen Number	CO3	PO1	10
	b)	Albert Einstein is pondering how to write his equation. He knows that energy E is a function of mass (m) and speed of light (c), but he does not know the functional relationship. Pretend that Albert knows nothing about dimensional analysis, you can help Einstein to come up with his equation.	CO3	PO2	10
