

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 23ME3ESMSM / 22ME3ESMSM

Max Marks: 100

Course: Material Science and Metallurgy

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With a neat sketch explain the stress-strain diagram for Mild steel. Identify the salient points and mention the properties.			<i>CO1</i>	<i>PO1</i>	10
		b)	With relevant sketches explain the ductile fracture behaviour.			<i>CO1</i>	<i>PO1</i>	10
	OR							
	2	a)	Differentiate between slip and twinning plastic deformation mechanisms. Derive the equation to evaluate critically resolve shear stress.			<i>CO1</i>	<i>PO1</i>	10
		b)	Sketch and explain the creep curve and identify the salient points. Elaborate on the factors that affect the creep behavior.			<i>CO1</i>	<i>PO1</i>	10
	UNIT - II							
	3	a)	In alloys, explain the solidification mechanism with relevant sketches.			<i>CO1</i>	<i>PO1</i>	10
		b)	Explain the different types of solid solutions. Explain the Hume-Rothery rules governing the formation of solid solution and intermediary phases.			<i>CO1</i>	<i>PO1</i>	10
	OR							
	4	a)	In pure metals, explain the solidification mechanism with relevant sketches.			<i>CO1</i>	<i>PO1</i>	10
		b)	With a neat sketch explain the isomorphous diagram considering an example and explain the Gibb's rule and Lever rule.			<i>CO2</i>	<i>PO1</i>	10
UNIT - III								
	5	a)	Sketch the Fe-C equilibrium diagram, identify and explain the eutectic, eutectoid and peritectic reactions.			<i>CO3</i>	<i>PO1</i> <i>PO2</i>	10

	b)	Sketch and explain the continuous cooling curve for steels	CO2	PO1	10
		OR			
6	a)	Sketch and explain the TTT curve for eutectoid steels.	CO2	PO1	10
	b)	Explain the effect of various alloying elements on steels.	CO3	PO1	10
		UNIT - IV			
7	a)	Explain the mechanism of diffusion and Fick's laws of diffusion.	CO1 CO2	PO1	10
	b)	Explain the surface hardening processes of carburizing and induction hardening.	CO4	PO1	10
		OR			
8	a)	Explain the various factors affecting diffusion.	CO1 CO2	PO1	10
	b)	Explain the heat treatment processes of annealing and tempering with relevant sketches.	CO4	PO1	10
		UNIT - V			
9	a)	Explain the composition, properties and applications of low and high carbon steels.	CO3	PO1	10
	b)	Explain the process of pultrusion with a neat sketch.	CO1	PO1	10
		OR			
10	a)	Explain the composition, properties and applications of cast iron.	CO3	PO1	10
	b)	Explain the process of vacuum- bag with a neat sketch.	CO1	PO1	10
