

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 23ME3ESMSM /22ME3ESMSM

Max Marks: 100

Course: Materials Science and Metallurgy

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	A material has undergone plastic deformation and on observation using a suitable instrument, there was a formation of mechanical twins and slip in the material. Explain the mechanism of slip and twinning.		<i>CO1</i>	<i>PO1</i>	10
		b)	Explain the concepts of Bauschinger's effect and Critically resolved shear stress.		<i>CO1</i>	<i>PO1</i>	10
OR							
1	2	a)	With a neat sketch explain the behavior of a material subjected for a tensile/ compression load under prolonged thermal perturbation.		<i>CO1</i>	<i>PO1</i>	10
		b)	Materials subjected for completely reversal cyclic loading will fail prematurely. Stating its cause, with an experimental support, comment on this property referring to both ductile and brittle materials.		<i>CO1</i>	<i>PO1</i>	10
			UNIT - II				
2	3	a)	Retaining homogeneity in metallic state is governed by rules. Stating them, comment on the types of solid solution.		<i>CO1</i>	<i>PO1</i>	10
		b)	The critical radius of nucleation is having a greater influence of Surface and Volume energy. Considering these two energies and their responses, show this radius mathematically is $-2 \gamma / \Delta G$,		<i>CO1</i>	<i>PO1</i>	10

OR					
4	a)	<p>Two metals A and B are used to form an alloy containing 75% A and 25% B. A melt at 650 °c and B at 450 °c. The solid solubility of metal A in B and of B in A are negligible. The metal pair forms a eutectic at 40% A and 60% B which solidifies at 300 °c. Assume the liquidus and solidus line to be straight. Draw the phase diagram for the alloy series and find;</p> <ul style="list-style-type: none"> i) The temperatures at which the alloy starts and completes solidification. ii) The percentage of eutectic in the alloy at room temperature. iii) The amount of liquid present and its composition, at a temperature of 390° c. iv) Specific gravity of the alloy, if specific gravity of metal A is 2.0 and metal B is 7.0. 	CO2	PO1	10
	b)	<p>Two solids will completely mix both in their liquid and solid states. Stating its type, extract the corresponding phase diagram and explain.</p>	CO2	PO1	10
UNIT - III					
5	a)	<p>Draw Fe-C equilibrium diagram with all phase fields with temperatures and corresponding microstructures. Explain equilibrium diagram and all the invariant reactions.</p>	CO2	PO1	16
	b)	<p>A foreign element can be added to tune up some basic properties for specific applications. Explain the different alloying elements added to steel.</p>	CO2	PO1	04
OR					
6	a)	<p>Throw some light on experimental procedure for constructing Temperature Time Transformation diagram for eutectoid steels.</p>	CO2	PO1	14
	b)	<p>TTT diagram is more useful when compared to equilibrium Fe-C system". Justify</p>	CO2	PO1	06
UNIT - IV					
7	a)	<p>Heat treatment in metallurgy is useful in many aspects. Along with its general objectives define it.</p>	CO3	PO1	08
	b)	<p>Flame hardening, Carburizing and Cyaniding are most promising heat treatment process. Along with the applications, describe the procedure.</p>	CO3	PO1	12
OR					
8	a)	<p>What is diffusion. What are the factors affecting diffusion, explain them in detail.</p>	CO3	PO1	10

	b)	Explain the steady and unsteady state diffusion as discussed by Adolf Fick.	CO3	PO1	10
		UNIT - V			
9	a)	Define composite material. Give the classification based on matrix, geometry of reinforcement and construction.	CO3	PO1	08
	b)	Explain stir casting method to produce Metal Matrix Composites with a neat sketch	CO3	PO1	06
	c)	With a neat sketch explain pultrusion process for FRP manufacturing	CO3	PO1	06
		OR			
10	a)	FRP s can be manufactured by Spray-up process for high smooth surface like Boat hull. Support this statement with a sketch.	CO1	PO1	07
	b)	POLYMER COMPOSITES are used in production of tubular structures Support this statement with a sketch.	CO1	PO1	07
	c)	MMC s are very much supportive where lower weight and increased strength or durability are critical factors. Considering these aspects brief some applications.	CO1	PO1	06
