

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 23ME3PCSOM / 22ME3PCSOM

Max Marks: 100

Course: Strength of Materials

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define the following terms: (i) Normal stress (ii) Volumetric strain (iii) Poisson's ratio	CO1	PO1	06
	b)	Derive an expression for deformation of tapering bar of rectangular section.	CO1	PO1	07
	c)	A load of 270 kN is carried by a short concrete column 250 mm x 250 mm in cross section. The column is reinforced with 8 steel bars of 16 mm diameter. Find the stresses in concrete and steel, if the modulus of elasticity for the steel is 18 times that of concrete. If the stress in concrete is not to exceed 5 MPa. Find the area of steel required, so that the column may carry of load 500 kN.	CO1	PO2	07
OR					
2	a)	For a plane element subjected to a general two dimensional stress system, derive the expression for normal and tangential stress on a plane inclined at an angle to the X-plane.	CO1	PO1	08
	b)	At a point in a body, the stress system has a tensile stress of 250 MPa in the horizontal direction and another tensile stress of 100 MPa in the vertical direction. The point is also subjected to a simple shear stress of 25 MPa, such that when it is associated with the major tensile stress, it tends to rotate the element in the clockwise direction. What is the magnitude of the normal and shear stresses on an inclined section at an angle of 20° with the major tensile stress? Use Mohr's circle method.	CO4	PO2	12
UNIT - II					
3	a)	Draw SFD and BMD for a simply supported beam subjected to a uniformly distributed load of intensity w per unit length over the entire span L . What is the maximum value of shear force and bending moment?	CO4	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Draw the shear force and bending moment diagrams for a simply supported beam subjected to two concentrated load and a uniformly distributed load as shown in Figure 3b.	CO4	PO2	12
Figure 3b					
		UNIT - III			
4	a)	Derive the bending equation for a beam subjected to pure bending and list out its assumptions.	CO1 CO2	PO1	08
	b)	An I-section of a beam has equal flanges each of 120 x 20 mm and web of size 200 x 10 mm. Draw the shear stress distribution curve when the section is subjected to a shearing force of 100 kN.	CO1 CO2	PO2	12
		OR			
5	a)	A cantilever beam is subjected to a point load at its free-end. Using double integration method, derive expressions for slope and maximum deflection at the free-end.	CO1 CO2	PO1	08
	b)	A cantilever beam is loaded as shown in Figure 5b. Determine the deflections at B and D. Take $E = 10^8 \text{ kN/m}^2$ and $I = 10^{-4} \text{ m}^4$.	CO1 CO2	PO2	12
		Figure 5b			
		UNIT - IV			
6	a)	Derive the torsion equation; $T/J = \tau/R = G\theta/L$ and list out its assumptions.	CO1 CO3	PO1	10
	b)	A hollow shaft having internal diameter 40% of its external diameter transmit 562.5 kW power at 100 rpm. Determine the internal and external diameter if the shear stress is not to exceed 60 N/mm ² and the twist in length of 2.5 m should not exceed 1.3 degree, the maximum torque being 25% greater than mean. Take $G = 9 \times 10^4 \text{ N/mm}^2$.	CO1 CO3	PO2	10

UNIT - V					
7	a)	A pipe of 500 mm internal diameter and 75 mm thick is filled with a fluid at a pressure of 6 N/mm ² . Find the maximum and minimum hoop stress across the section of the cylinder. Also sketch the radial pressure and hoop stress distribution across the section.	<i>CO1</i> <i>CO3</i>	<i>PO2</i>	12
	b)	Derive expression for Euler's crippling load for a column whose both ends are fixed.	<i>CO1</i> <i>CO3</i>	<i>PO1</i>	08

B.M.S.C.E. - ODD SEM 2023-24