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Introduction to Fatigue failure: 
 

 

Some machine elements are subjected to static loads and for such elements failure theories are 

used to predict failure (Yielding or Fracture). However, most metallic structures like aircrafts, 

ships, bridges, automobiles, and machine elements like- gears, axles, shafts, bearings, cams 

and followers, are subjected to varying or fluctuating stresses.  Fluctuating stresses (repeated 

over long periods of time) will cause a part to fail (fracture) at a stress level much smaller than 

the ultimate strength or even yield strength. Unlike static loading where failure can be detected 

before it happens, fatigue failures are sudden and therefore catastrophic. 

Fatigue failures are similar to brittle fracture and the fracture surfaces are perpendicular to the 

load axis.  More than 85% of the failures are due to fatigue loading. Fatigue failure is due 

to crack formation and propagation. 

 

Mechanical failures were observed to take place in metals and materials subject to repetitive 

stresses well below their yield strength. The theory came to be that the metal became "tired" or 

"fatigued", hence the term "fatigue" or "metal fatigue". A typical Railway axle failure, which 

was the origin of a different school of thought in terms of material failure mechanism, is shown 

in Fig.1. The axle, although made of steel, behaved like a brittle material in the way it failed. 

The failure was sudden and catastrophic and the material did not show any evidence of 

yielding; the two halves of the axle had absolutely no deformation and did not have any 

microstructural changes. 

 

                                            
 

                            

Fig.1 Railway Axle failure- origin of fatigue loading concepts 
 

 

Between 1852 and 1870, the first systematic fatigue tests were carried out on specifically 

designed laboratory specimens by August Wohler, a German railway engineer, simulating the 

loading conditions of a railway axle. These tests enabled Wohler to relate his experimental 

results to the stresses in locomotive axles. In 1870, Wohler compiled a report of his 

experimental work which contained several conclusions known as Wohler’s laws. 

 

Rotating beam fatigue testers are one of the oldest methods used to determine a material’s 

fatigue behaviour. A sample is placed in the machine and a force is applied via a bending 

moment using weights hung off the sample. The force induces a surface stress that will be 

tensile on one side of the sample (generally the top) and compressive on the opposite side. 

When the test is started, the sample will rotate at the desired rate and this rotation will cause 

the surfaces to interchange so that each surface experiences alternating tensile and compressive 

stresses. This is illustrated in Fig.2. 



                            
 

                               
 

Fig.2   Rotating beam Bending test carried out by Wohler 

 

 

Stages in Fatigue failure: 
Stage-1:  Crack Nucleation 
Fatigue cracks usually start at locations of high stress concentrations (notches) such as sudden 

changes in cross section, sharp corners, cracks, blowholes, inclusions, welding defects, 

scratches, inspection stamps, holes etc. Localized yielding and slip along grain 

boundaries lead to micro-cracks.  

Stage-2: Crack propagation 

 -Macro crack development, orderly crack growth 

Stage 3: Unstable crack leading to failure 

- Remaining material cannot support stress, which will lead to rapid fracture. 

The fatigue failure stages is shown in the Fig.3 

 

 

                                                                                      
 

                                      Fig.3 Mechanism of fatigue failure 

 

 

 

 

 

 



Fundamentals of Fatigue Loading:  
 

A typical fatigue load is shown in Fig. 4. 

 

 

 

 
                           Fig.4  A typical Fatigue load 

 

The stress varies between a maximum stress, , and a minimum stress, , during a 

load cycle. In the field of fatigue, the variation in stress is often defined using the stress 

amplitude, , and the mean stress, . Further, variables defining the stress range, , 

and the R-value are frequently used to describe a stress cycle.  

Maximum Stress= σ
max    

 

Minimum Stress= σ
min

 

Mean Stress, Average stress              σ
m

 =   (σ
max

 + σ
min

) / 2 

Variable stress, Alternating stress     σ
a
 =   (σ

max
 – σ

min
) /2 

 

R= Stress Ratio = σ
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/
 
σ
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Stress Range= ∆σ = 
σ

max  - σmin
 

 

A= Amplitude Ratio = σ
a
 / σ
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MEAN STRESS 

A stress component always there on the member. 

 

VARIABLE COMPONENT  

Superimposed on the Mean stress component to obtain Cyclic/ Fluctuating stress.  

 

σmax = σm + σ
a  

σmin  = σm - σ
a  

 

 

 



Different types of cyclic loads:  

 

Different types of cyclic/ fluctuating stresses are shown in Fig. 5.  

 

 
 

 

Completely reversed stress                  Released Tension                Fluctuating Stresses 

σ
m

 = 0,   R= -1                           σ
m

 = 0.5 σ
max

, R= 0 , σ
min

 = 0          Non Zero mean stress 

  

 

 
Zero mean and changing Amplitude stress                  Changing mean and changing 

                                                                                               Amplitude stress 

 

           
A quasi-random stress–time pattern that might be typical of an operational aircraft 

during any given mission. 

 

 

                                                       Fig.4 Types of Cyclic loads 



FATIGUE TESTING: 

 

In stress based fatigue tests, multiple samples of identical size, shape and composition are 

subjected to different levels of stress amplitude, σ
a
, and the number of cycles to failure, N, is 

measured for each sample. 

 

Various types of instruments and machines are used to apply cyclic loading and include rotating 

bend and cantilever bend machines, servo-hydraulic or servo-electric axial push-pull testing 

systems, and electric motor driven torsion fatigue testers.  

The resulting S-N data for each identical specimen is plotted on either a log-log or semi log 

graph. Regression is used to fit a curve through the points resulting in an S-N diagram.  
A typical rotating bending test machine and the test specimen is shown in Fig. 5. 

Most fatigue experiments are performed with 
m
 = 0 (e.g. rotating beam tests). 

Rotating Beam Fatigue Testing Machine: 
 

 
 

 

                                       
                                   Fig.5. Rotating Bending test machine and Test specimen for  
 

Engineering fatigue data is usually plotted as S-N curve. Here S is the stress and N the number 

of cycles to failure (usually fracture). The x-axis is plotted as log (N). It should be noted that 

the stress values plotted are nominal values and does not take into account local stress 

concentrations. 

 

Typically the stress value chosen for the stress is low (< 𝑦) and hence S-N curves deal with 

fatigue failure at a large number of cycles (>104cycles). These are the high cycle fatigue tests. 

The results of the test are plotted on a log-log sheet and a typical S-N diagram is shown in 

Fig.6. As obvious, if the magnitude of alternating stress increases the fatigue life decreases. 

 



 

 

 

 

Fig.7. S-N diagram for steel and Aluminum 

 

Broadly two kinds of S-N curves can be differentiated for two classes of materials.  

 Those where a stress below a threshold value gives a ‘very long’ life; this stress value 

is called the Fatigue Limit / Endurance limit. Steel and Ti come under this category. 

 Those where a decrease in stress increases the fatigue life of the component, but no 

distinct fatigue life is observed. Al, Mg, Cu come under this category. ( Fig.7) 

Equation of the line S
Nf 

  A (N
f
)
b
 

Taking log on either side, 

Log S
Nf

 = Log A + b Log N
f
      

Fig.6. S-N diagram 

Stress below Fatigue  

limit gives ‘infinite life’ 

 Steel, Ti show fatigue limit or 

Endurance Limit (σ
en

) 

 Al, Mg, Cu show no fatigue limit. 



 For these materials, the fatigue response is specified as fatigue strength/endurance 

strength, which is defined as the stress level at which failure will occur for some 

specified number of cycles (e.g., 10
8 

cycles).  

 For Aluminum, 100 MPa @ 5X10
8 

cycles. 

 

Low Cycle Fatigue and High Cycle fatigue: 

                   

Fig.8.Low and high cycle fatigue 

 

Low-Cycle fatigue: Domain associated with high loads and short service life. Significant 

plastic strain occurs during each cycle. Low number of cycles to produce failure. (Fig.8) 

Number of cycles to produce fatigue failure: 1<N˂10
3 

 

High-cycle fatigue: For low stress levels wherein deformations are totally elastic, longer 

lives result. This is called high-cycle fatigue in as much as relatively large numbers of cycles 

are required to produce fatigue failure. Domain associated with low loads and long service 

life. Strains are mostly confined to the elastics range.  

High number of cycles to produce fatigue failure. N>10
3 

 

Endurance Strength Modification Factors:  
 

The most important deviations that occur in design situation compared to standard test 

conditions are: 

 

•  Load variations 

•  Size variations 

•  Surface finish differences  

•  Temperature differences  

•  Reliability 

•  Other miscellaneous-effects- corrosive environment, fretting, residual       

stresses, plating, metal spraying etc.  



To account for these conditions a variety of modifying factors, each of which is intended to 

account for a single effect, is applied to the endurance limit value of test specimen obtained 

under laboratory conditions.  

 

If 𝜎𝑒𝑛= Un-corrected Endurance limit in reversed bending of the highly polished test 

specimen under laboratory testing conditions, 

Then, Corrected Endurance limit = (𝑨 × 𝑩 × 𝑪) 𝝈𝒆𝒏  

Where ‘A’ is the load correction factor, ‘B’ is the size correction factor,  

and ‘C’ is the surface correction factor. 

 

Effect of Loading on Endurance Limit— Load Correction Factor (A) 

 

The endurance limit (𝜎𝑒𝑛) of a material as determined by the rotating beam method is for 

reversed bending load.  

There are many machine members which are subjected to loads other than reversed bending 

loads. Thus the endurance limit will also be different for different types of loading.  

The endurance limit depends upon the type of loading and may be modified as discussed below: 

         A = Load correction factor for the type of loading.  

               Its value is usually taken as 1 for reversed or rotating bending load 

            = for the reversed axial load, its value may be taken as 0.7. 

            = for the reversed torsional or shear load, its value may be taken as  

               0.5 to 0.6 for ductile materials and 0.8 for brittle materials. 

Effect of Size on Endurance Limit—Size Correction Factor (B) 

The rotating beam specimen is small with 7.5 mm diameter. The larger the machine part, the 

greater the probability that a flaw exists somewhere in the component. The chances of fatigue 

failure originating at any one of these flaws are more. The endurance limit, therefore, reduces 

with increasing the size of the component.    

     

                                  

Effect of Surface Roughness on Endurance Limit—Surface Correction Factor (C) 

The surface of the rotating beam specimen is polished to mirror finish. The final polishing is 

carried out in the axial direction to smooth out any circumferential scratches. This makes the 

specimen almost free from surface scratches and imperfections. 

Fatigue properties are very sensitive to surface conditions, Fatigue initiation normally starts at 

the surface since the maximum stress is at the surface.  

 



The factors which affect the surface of a fatigue specimen can be roughly divided into three 

categories: 

          

                                          

Different surface finishes produced by different machining processes can appreciably affect 

fatigue performance. Polished surface normally known as ‘par bar’ which is used in laboratory, 

gives the best fatigue strength. The surface correction factors can be obtained by Fig.9 for 

different surface conditions of the components.   

 

 

Fig.9. Surface Correction Factor based on surface finish 

and ultimate strength 

            

                  

                      (Reference: Data Hand Book-Mahadevan and Balaveera Reddy)                                                                         

 

 



Temperature: This factor accounts for reductions in fatigue life which occur when the 

operating temperature of the part differs from room temperature (the testing temperature). Upto 

450˚C, the correction factor is taken as 1.  

Reliability: This factor accounts for the scatter of test data. Generally for 50% reliability, the 

correction factor is 1. 

 

A number of other factors can act to reduce the fatigue resistance of a part.  
 

These include tensile residual stresses, corrosion, plating, metal spraying, cyclic frequency and 

other factors. Factors that reduce fatigue resistance must be accounted for when designing 

parts. Surface treatments such as shot peening can induce compressive residual stresses 

and increase the fatigue resistance of a part (cracks don’t open and grow well in 

compressive stress fields).  

Electroplating, especially chromium plating, while improves corrosion resistance and/or the 

looking of surface finish, generally decreases the fatigue limit of steel. 

Grinding is a necessary process to improve surface finish, abrade hard materials, and tighten 

the tolerance. However, it often introduces surface tension and the heat generated in the 

grinding process might temper the previously quench hardened components. 

Forging refines the grain structure and improves physical properties of the metal. 

Nevertheless, forging can cause decarburization (loss of surface carbon atoms) which is 

harmful to fatigue life. 

Hot rolling can also cause decarburization (loss of surface carbon atoms), a damaging loss 

regarding the fatigue life. 

Carburizing and nitriding produce higher strength and hardness at the surface and thus 

improves fatigue life. 

 

Commercial methods introducing favourable compressive stresses: 

 Surface rolling - Compressive stress is introduced in between the rollers during sheet 

rolling 

 Shot peening - Projecting fine steel or cast-iron shot against the surface at high 

velocity 

 Polishing - Reducing surface scratches 

 Thermal stress - Quenching or surface treatments introduce volume change  giving 

compressive stress.  

Surface rolling and shot peening operations are shown in Fig. 10. 
 

                                

 

Fig. 10  surface rolling and Shot peening. 

Surface rolling 

 

https://www.efunda.com/processes/surface/electroplatings.cfm
https://www.efunda.com/processes/machining/grind.cfm
https://www.efunda.com/processes/metal_processing/forging.cfm


Relation between Endurance limit in reversed bending and ultimate tensile 

strength: 
 

For Steels:                𝝈𝒆𝒏 = 0.5 𝝈𝒖 for 𝝈𝒖
 
< 1400 MPa 

                                         = 700 MPa
   

for 𝝈𝒖
 
> 1400 MPa 

For Cast iron:            𝝈𝒆𝒏 = 0.4 𝝈𝒖 

For Aluminium:        𝝈𝒆𝒏 = 0.4 𝝈𝒖 
 
  

For Copper alloys:    𝝈𝒆𝒏 = 0.4 𝝈𝒖 

 

NOTCH SENSITIVITY: The term “NOTCH” is referred to any discontinuity in shape 

or non-uniformity of material. A notch is a stress raiser, and at the notch, the local stresses will 

be much higher than the nominal stresses. The notch serves as a starting point for fatigue crack. 

The notch sensitivity of a material is a measure of how sensitive a material is to notches or 

geometric discontinuities. Notch sensitivity is defined as the degree to which the theoretical 

effect of stress concentration is actually reached in a notch. 

 

• Different types of Notches:  

• Metallurgical Notches- inclusions, blowholes, quenching cracks etc. 

• Mechanical Notch- grooves, holes, threads, keyways, fillets, serrations, surface 

indentations etc. 

• Service notch- chemical or corrosion pits, scuffing, fretting, impact indentations, 

etc.  

It is observed that actual reduction in endurance limit of a material due to stress concentration is less 

than the amount indicated by the theoretical Stress concentration factor is Kt.  

To take into this reduction in stress concentration, Fatigue stress concentration factor Kft is 

introduced in Fatigue analysis.  

 

                         Kft =
𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑎 𝑛𝑜𝑡𝑐ℎ 𝑓𝑟𝑒𝑒 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 

𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑎 𝑛𝑜𝑡𝑐ℎ𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛
 

 

Notch sensitivity is defined as the susceptibility of the material to succumb to the damaging 

effects of stress raising notches in fatigue loading. The notch sensitivity factor ‘q’ is defined as 

q =   
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑜𝑣𝑒𝑟 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑒 

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑜𝑣𝑒𝑟 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠
 

q = (Kft - 1) / (Kt - 1) 

where ‘q’ is the notch sensitivity index,  Kft is the fatigue notch factor and Kt is the stress-concentration 

factor.  

A material is said to be fully notch sensitive if q approaches a value of 1.0; it is not notch sensitive 

if the ratio approaches 0.     Notch sensitivity index q can be obtained from charts shown in Fig.11.  



                   

                        Fig. 11.  Notch sensitivity index ‘q’ based on notch radius             

                                        

Effect of Mean Stresses on Fatigue Life: 

 

When a component is subjected to fluctuating stresses, there is a mean stress component as 

well as alternating stress component as illustrated in the Fig.12.  

 

 
Fig.12. Fluctuating stresses 

 

Mean stress has effect on fatigue life when present in combination with alternating component. 

In general, compressive mean stresses are beneficial and tensile mean stresses are detrimental 

to fatigue life as shown in the Fig.13.  

 

 
                             Fig.13.    Effect of mean stress on fatigue life 



When the component is subjected to both mean stress and alternating stress, the actual failure 

occurs at different scattered points as shown in Fig.14.  There exists a border, which divides 

the safe region from unsafe region for various combinations of  𝜎𝑚 and 𝜎𝑎.  

 

This border can be: (i) Soderberg’s line  

                                (ii) Goodman’s line 

                               (iii) Gerber’s parabola 

 

Fig.15 illustrates the way failure prediction is made using the above criteria. 

  

 
Fig.14 Failure locus with different ratios of Alternating stress and Mean stress 

 

 
 
                             Fig.15 Failure prediction using different criteria 

 

 

 



SODERBERG’S RELATION: 

 
Soderberg’s relation is based on yield strength of the material whereas all other failure relations 

for dynamic loading are based on ultimate strength of the material. 

 

This theory proposes that designs for fluctuating normal stress states should be based on a 

limiting condition defined by a straight line drawn from the endurance limit on the vertical axis 

to the yield stress on the horizontal axis in the first quadrant.  

 

              σ
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All mean stresses are plotted on X axis and alternating stresses are plotted on Y axis. 

When 𝜎𝑎 =0, the component fails when the stress value reaches yield strength 𝜎𝑦. 

When 𝜎𝑚 =0, the component fails when the stress value reaches endurance strength 𝜎𝑒𝑛. 

The line joining 𝜎𝑦 and 𝜎𝑒𝑛 indicates the failure line for different combinations of 𝜎𝑎 

and 𝜎𝑚 . This theory proposes that designs for fluctuating stress should be based on limiting 

condition defined by a straight line drawn from the endurance limit on vertical axis to the yield 

point on the horizontal axis in the first quadrant. The working stress line is drawn considering 

the Factor of safety ‘n’ as shown in the diagram. 

 

Comparing the similar triangles DQP and DOC 
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Considering the fatigue stress concentration factor, correction factors for type of loading, size 

and surface, the Goodman’s equation for ductile materials can be modified and written as: 

 
𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝜎𝑚

𝜎𝑦
=

1

𝑛
 

The Soderberg’s equation for brittle materials can be modified and written as: 

 
𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝑘𝑡𝜎𝑚

𝜎𝑦
=

1

𝑛
 

 

𝑘𝑡 is considered in brittle materials for the fact that stress concentration is serious in brittle 

materials even in static loading. Mean stress being a stress component whose magnitude does 

no vary with time,  

 

Goodman’s Relation: 
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This theory proposes that designs for fluctuating normal stress states should be based on a 

limiting condition defined by a straight line drawn from the endurance limit on the vertical axis 

to the Ultimate tensile strength on the horizontal axis in the first quadrant.  

 

The derivation can be made on similar lines to that of Soderberg’s Relation. 

 

Considering the fatigue stress concentration factor, correction factors for type of loading, size 

and surface, the Goodman’s equation for ductile materials can be modified and written as: 

 

 

 

 

The Goodman’s equation for brittle materials can be modified and written as: 

 

 

 

 

 

Problem 1: 

 

Determine the magnitude of the load ‘P’ for a simply supported beam of 400 mm length 

if the load at the mid span varies cyclically from 2P to 4P. Size of the beam is 50 mm 

diameter. The endurance limit for reversed bending is 350 MPa and yield point stress in 

tension is 520 MPa. Take size factor as 0.85, and surface correction factor as 0.9. Use a 

design factor of safety of 1.9. There is no keyway present in the critical section on the 

shaft. 

 

Solution:  

 

Since there is no keyway present in the critical section, the effect of stress concentration can 

be neglected.   𝑘𝑡 = 𝐾𝑡𝑓 =1. 

A= Correction factor for the type of loading= 1 (as the member is subjected to Bending stress) 

B= Size factor= 0.85 (given) 
C= Surface correction factor = 0.9 (given) 

n= Factor of safety= 1.9 (given) 

                             2P 

 

 

 

 

 

 

 

 

 

 

 

 

𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝑘𝑡𝜎𝑚

𝜎𝑢
=

1

𝑛
 

𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝜎𝑚

𝜎𝑢
=

1

𝑛
 

P P 

200 

400 

4P 

2P 
2P 

B D 
C 



Bending moment at B=0, at D=0. The bending moment at C varies from minimum to 

maximum as the bending load varies from minimum to maximum. 

 

𝑀𝑚𝑎𝑥 = Maximum Bending moment at C= 200 X 2P= 400P N-mm 

𝑀𝑚𝑖𝑛 =  Minimum Bending moment at C= 200 X P= 200P N-mm 

 

 

𝑀𝑚  =
𝑀𝑚𝑎𝑥 +𝑀𝑚𝑖𝑛

2
                 𝑀𝑚  =

400𝑃 +200𝑃

2
  = 300P  

 

 

𝑀𝑎  =
𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛

2
               𝑀𝑎  =

400𝑃 −200𝑃

2
 = 100P 

  

𝜎𝑚 =  
32𝑀𝑚

𝜋𝑑3
                           𝜎𝑚 =  

32×300𝑃

𝜋𝑑3
   = 0.0244P 

𝜎𝑎 =  
32𝑀𝑎

𝜋𝑑3
                              𝜎𝑎 =  

32×100𝑃

𝜋𝑑3
   = 0.00815P MPa 

 

Substituting the values in the Soderberg’s equation, 
 

𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝜎𝑚

𝜎𝑦
=

1

𝑛
 

 
1

1 × 0.85 × 0.9

0.00815P 

350
+  

0.0244𝑃

520
=

1

1.9
 

                                                 

                                                          P = 6806 N 

Problem 2: 

 

A component machined from a steel plate made of 45C8 is shown in the Fig.  

It is subjected to a completely reversed axial loading of 50 kN.  

The factor of safety is 2. Size factor is 0.85 Determine the plate thickness for an infinite 

life. Take the notch sensitivity factor as 0.8. Yield strength in tension is 315 MPa. The 

Ultimate Tensile strength is 610 MPa. 

 

 

 

 

 

 



Solution:  

 

Consider the smaller section of the plate for design as the stress is maximum in that section. 

The plate is subjected to completely reversed axial loading. 

 

σ
u 

=Ultimate tensile strength of 45C8- 610 MPa. 

σ
en 

 = Endurance strength in reversed bending= 0.5x σ
u 

 = 0.5 x 610 =305 MPa 

A= Correction factor for the type of loading =0.7 (for axial loading) 

B= Size factor = 0.85 (size factor) 

C= Surface correction factor =0.86 from table 2.2 (for 630 MPa, for machined plate) 

n= Factor of safety = 2 (given) 

σ
y
 = 315 MPa (given) 

q= notch sensitivity index= 0.8 (given) 

 

 

 

 

 

𝐹𝑎   =  
𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛

2
=

50000−(−50000)

2
= 50000 N. 

 

The mean axial load is zero and hence the mean axial stress is zero. 

𝜎𝑚 = 0   and                   𝜎𝑎 =
𝐹𝑎

𝐴
 = 

50000×4

50×𝑡
=

1000

𝑡
  

 

Determination of Fatigue stress concentration factor: 
 

  

 Substituting the values in the Soderberg’s equation, 

 

𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝜎𝑚

𝜎𝑦
=

1

𝑛
 

r/d= 5/50= 0.1 

D/d= 100/50=2 

Determine Kt from Fig.2.6 of Mahadevan;  

K
t
 =2.25. 

K
tf 

 = 1+ q (K
t
 -1); 

Ktf  = 1+ 0.8 (2.25-1) = 2;  

q is notch sensitivity index. 
 



2

0.7 × 0.85 × 0.86
 

1000 

𝑡 × 315
+  0 =

1

2
 

 

                                                 t = 24.81 mm= 25 mm 

 

Problem 3: 

 

A steel connecting rod is subjected to a completely reversed axial load of 100 kN.  

Suggest a suitable size of the rod using a Factor of safety of 2.  

The ultimate tensile strength of the material is 1100 MPa. The yield strength is 930MPa. 

The correction factor for Loading may be taken as 0.85, and size factor of 0.85. Neglect 

the column action and effects of stress concentration. 

 

Solution:  

 

Connecting rods are subjected to completely reversed axial loading.  

It is clearly stated that column action should be neglected, hence effect of bending stresses 

due to buckling need not be considered.  

It has also been given that the effect of stress concentration has to be neglected. 

 

Given: Correction factor for type of loading (Axial) = A=0.85 

            Correction factor for size=B=0.85 

            Correction factor for surface = C= 0.76  (from Table 2.2, Mahadevan,  

                                                                               for σ
u 

=1100 MPa, for cold drawn steel ) 

            Factor of safety= n = 2 

            Neglecting Stress concentration, K
tf
 =1 

 

          

            

The mean axial load is zero and hence the mean axial stress is zero. 

 

𝜎𝑚 = 0 

Substituting the values in the Soderberg’s equation, 

 

𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝜎𝑚

𝜎𝑦
=

1

𝑛
 

 
1

0.7 × 0.85 × 0.76
 

σ𝑎 

550
+  0 =

1

2
 



                                                 σ𝑎 = 151 MPa 

Let  ‘d’ be the diameter of the connecting rod. 

𝜎𝑎 =
𝐹𝑎

𝐴
 = 

100000×4

𝜋𝑑2
= 151 

                                                      

                                                            d = 29.5 or 30 mm 

Problem 4: 

 

A cantilever beam made of cold drawn C40 steel is shown in Fig.2. The force P acting at 

the free end varies from -50 N to +150 N as shown. The factor of safety should be 2. Notch 

sensitivity index at the fillet cross section is 0.9. Determine the diameter ‘d’ at the fillet 

cross section using (i) Soderberg’s relation (ii) Goodman’s relation. 

 

 

Solution: 

Note: The stresses will be maximum at the section where there is change of cross section. Point 

A at the fillet experiences maximum bending stress. 

 

σ
u  

=Ultimate tensile strength of C40- (from Table 1.8, Mahadevan, page 418) 

     = 600 MPa. (570-667 MPa range) 

 σ
en 

 = Endurance strength in reversed bending= 0.5x σ
u 

 = 0.5x 600 =300 MPa 

 σ
y 
   =  Yield strength in tension= 324 MPa  

 n= Factor of safety= 2 

Correction factor for type of loading =A= 1  (bending) 

                 Correction factor for size= B=0.85 

         Correction factor for surface = C= 0.86 (from Table 2.2, Mahadevan,  

                                                                           for σ
u 

=600 MPa, for cold drawn steel)  

 

A 



 
 

M
max

 = +150 x 100= 15000 N-mm 

M
min

 = -50 x 100= - 5000 N-mm 

 

𝑀𝑚  =
𝑀𝑚𝑎𝑥 +(−𝑀min )

2
                 𝑀𝑚  =

15000 −5000

2
  = 5000 N-mm  

𝑀𝑎  =
𝑀𝑚𝑎𝑥 −(−𝑀min )

2
               𝑀𝑎  =

15000 −(−5000)

2
 = 10000 N-mm 

  

𝜎𝑚 =  
32𝑀𝑚

𝜋𝑑3
                           𝜎𝑚 =  

32×5000

𝜋𝑑3
   = 

50955

𝑑3
  

𝜎𝑎 =  
32𝑀𝑎

𝜋𝑑3
                              𝜎𝑎 =  

32×10000

𝜋𝑑3
   = 

101910 

𝑑3
 

 

Substituting the values in the Soderberg’s equation, 

 
𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝜎𝑚

𝜎𝑦
=

1

𝑛
 

 
1.387

1 × 0.85 × 0.86
 

101910 

𝑑3 × 300
+  

50955

𝑑3 × 324
=

1

2
 

 

                                                             d = 11.90 mm 

Substituting the values in the Goodman’s equation, 

 
𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝜎𝑚

𝜎𝑢
=

1

𝑛
 

 
1.387

1 × 0.85 × 0.86
 

101910 

𝑑3 × 300
+  

50955

𝑑3 × 600
=

1

2
 

                                                              

d = 11.34 mm 

Soderberg’s relation is more conservative in its approach and gives a higher value of the 

diameter. 

Determination of Fatigue stress concentration factor: 

 

r/d= 0.2d/d= 0.2,  

D/d= 1.5d/d= 1.5 

Determine Kt from Fig.2.16 of Mahadevan;  

K
t
 =1.43. 

K
tf 

 = 1+q (K
t
 -1);  

q is notch sensitivity index=0.9 (given). 

Ktf  = 1+0.9(1.43-1)= 1.387;  

 
 



 

Problem 6: 

  

A polished steel bar shown in Fig. is subjected to an axial tensile stress that varies from 

zero 𝑭𝒎𝒂𝒙.  The radius of the groove is 3 mm. The outer diameter of the bar is 30 mm. 

The notch sensitivity factor at the groove is 0.95. The ultimate tensile strength of the bar 

is 1250 MPa. The endurance limit in reversed bending is 600 MPa. Find the maximum 

force the bar can carry for an infinite life based on Goodman’s Criterion with a factor of 

safety of 2. 

 

Solution: 

 

σ
u 

=Ultimate tensile strength of the bar = 1250 MPa 

 σ
en 

 = Endurance strength in reversed bending= 600MPa 

Correction factor for type of loading (Axial)= A=0.7 

Correction factor for size=B=0.85 

Correction factor for surface = C= 1 as the bar has a polished surface. 

Factor of safety= n = 2 

    

       

 

                           

 

 

 

The bar is subjected to released cyclic  

Determination of Fatigue stress 

concentration factor: 

r/d= 3/26= 0.115, D/d= 30/26= 1.15 

Determine Kt from Fig.2.9 of Mahadevan;  

K
t
 =1.85. 

K
ft 

 = 1+q(K
t
 -1); K

ft
 = 1+0.95(1.85-1)= 

1.807;  

q is notch sensitivity index. 
 

d=ϕ26mm 

r =3 

D 



𝐹𝑚𝑖𝑛 = 0 

𝐹𝑎   = 𝐹𝑚   =   
𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛

2
=  

𝐹𝑚𝑎𝑥

2
 = 0.5 𝐹𝑚𝑎𝑥   

    𝜎𝑚 =  𝜎𝑎 =  
0.5𝐹𝑚𝑎𝑥

𝐴
=  

0.5𝐹𝑚𝑎𝑥 ×4

𝜋×𝑑2
=  

0.5𝐹𝑚𝑎𝑥 ×4

𝜋×262
= 0.00094 𝐹𝑚𝑎𝑥 

 

Substituting the values in the Goodman’s equation, 

 

𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝜎𝑚

𝜎𝑢
=

1

𝑛
 

 
1.807

0.7 × 0.85 × 1
 
0.00094 𝐹𝑚𝑎𝑥

600
+  

0.00094 𝐹𝑚𝑎𝑥

1250
=

1

2
 

 

                                                             𝑭𝒎𝒂𝒙 = 90876 N 

The maximum load that the bar can carry is 90876 N. 

 

Problem 6: 

 

A rotating shaft, subjected to a non-rotating force of 5 kN is shown in Fig.4. The shaft is 

machined from plain carbon steel with an ultimate tensile strength of 500 MPa. The 

equivalent notch radius can be taken as 3 mm. Determine the factor of safety of this 

member based on the Goodman’s criterion. Take the notch sensitivity index at the fillet 

as 0.9. Comment on the result. 

 

 

Solution:  

 

Note: Failure possibilities must be investigated at three sections- B, C, and D.  

At section C, although the bending moment is maximum, the diameter is more and there is no 

stress concentration. 

At section D, the diameter is more and bending moment is lower compared to Section B.  

Section B is prone to failure and considered for design. 

 

 

 



 

 

 

 

 

 

 

 

 

 

   

Taking moments about ‘A’: 

 5000 x 400 -Re x700=0 

 Re= 2857 N, Ra= 5000-2857=2143 N 

Bending Moment at B=2143 x 300= 642900 N-mm 
Bending Moment at C=2143 x 400= 571400 N-mm 

Bending Moment at D=2857 x 200= 642900 N-mm 

 

Since the shaft is rotating and the load is stationary, the load on the shaft is of completely 

reversed bending type.  𝜎𝑚 = 0 

A= 1 (for bending) 

B= 0.85 (size factor) 

C= 0.89 from table 2.2 (for 500 MPa, for machined shaft) 

σ
u  

= 500 MPa 

σ
en 

= Endurance strength in reversed bending= 0.5x σ
u 

 = 0.5x500 =250 MPa 

    

Determination of Fatigue stress concentration factor: 

 

r/d= 3/30= 0.1, D/d= 45/30= 1.5 

Determine Kt from Fig.2.16 of Mahadevan; Kt =1.67. 

K
tf 

 = 1+q (K
t
 -1); K

tf 
 = 1+0.9 (1.67-1)= 1.60;  

q is notch sensitivity index. 

      

𝑀𝑎  =
𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛

2
               𝑀𝑎  =

642900 −(−642900)

2
 = 642900 N-mm 

 

𝜎𝑎 =  
32𝑀𝑎

𝜋𝑑3
                              𝜎𝑎 =  

32×642900

𝜋×303
   = 242.6 𝑀𝑃𝑎 

 

Bending moment diagram 

300 400 

300 

B 

C 

D E 

A B C D 
E 

200 

Ra 
Re 

5000 



 

Substituting the values in the Goodman’s equation, 

 

𝐾𝑡𝑓

𝐴𝐵𝐶

𝜎𝑎

𝜎𝑒𝑛
+  

𝜎𝑚

𝜎𝑢
=

1

𝑛
 

 
1.60

1 × 0.85 × 0.89
 
242.6

250
+  0 =

1

𝑛
 

 

                                                            n = 0.467 ˂ 1 

 

The F.S. is less than 1. This component will not have infinite life instead will have a 

finite life less than a million cycles. 

 

Problem 7: 

A 40 mm diameter steel shaft has 𝝈𝒚 =413 MPa  𝝈𝒆𝒏 = 336 MPa. For a factor of safety of 2, 

what (i) repeated (ii) reversed torques can be sustained by the shaft indefinitely? The shaft has a 

groove machined on it. The radius of the groove is 2 mm and the diameter at the bottom of the 

groove is 36 mm. Take size factor =0.85 and surface factor=1.  

 

                                       

 

A= 0.6 (for Torsion) 

B= 0.85 (size factor, given) 

C= 1 (given) 

σ
en 

 = Endurance strength in reversed bending= 336 MPa (given) 

σ
y  

 = Yield strength = 413 MPa 

𝝉𝒚 = 𝟎. 𝟓 × 𝝈𝒚 = 0.5 x 413= 206.5 MPa 

 

 

 

 

 

 

 



(i) Let T be the released torque acting on the component 

 

 
 

T
m

 = (T
max

 + T
min

) /
 
2

  
 = T/2= 0.5T 

  

T
a
 = (T

max
 - T

min
) /

 
2

  
 = T/2= 0.5T 

 

Mean shear stress= 𝜏𝑚 =
16𝑇𝑚

𝜋𝑑3
= 

16×0.5 𝑇

3,14×363
 = 5.46x 10−5 MPa 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 =  𝜏𝑎 = 5.46x 10−5 MPa 

 

Determination of Fatigue stress concentration factor: 

r/d= 2/36= 0.05, D/d= 40/36= 1.33 

Determine Kt from Fig.2.13 of  Mahadevan; Kt =1.85. 

 

K
tf 

 = 1+q(K
t
 -1); K

tf 
 = 1+ 1 (1.85-1)= 1.85;  

Assuming ‘q’ notch sensitivity index =1 . 

 

Substituting the values in the Soderberg’s equation, 

 

𝐾𝑡𝑓

𝐴𝐵𝐶

𝜏𝑎

𝜎𝑒𝑛

+  
𝜏𝑚

𝜏𝑦

=
1

𝑛
 

1.85

0.6 × 0.85 × 1

5.46 × 10−5 × 𝑇

413
+  

5.46 × 10−5 × 𝑇

206.5
=

1

2
 

                                                  T= 684931 N-mm 
 

(ii) Let ‘T’ be the completely released torque acting on the component 

 

 



T
m

 = (T
max

 + T
min

) /
 
2

  
 = 0 

  

T
a
 = (T

max
 - T

min
) /

 
2

  
 = 2T/2= T 

 

𝜏𝑚 = 0                   𝜏𝑎 =
16𝑇𝑎

𝜋𝑑3
= 

16× 𝑇

3,14×363
= 1.09x10−4 T MPa 

 

Substituting the values in the Soderberg’s equation, 

 

𝐾𝑡𝑓

𝐴𝐵𝐶

𝜏𝑎

𝜎𝑒𝑛

+  
𝜏𝑚

𝜏𝑦

=
1

𝑛
 

1.85

0.6 × 0.85 × 1

1.09 × 10−4 × 𝑇

413
 =

1

2
 

                                                               
                                                 T= 522466 N-mm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



STRESSES DUE TO COMBINED LOADING: 
 

When a machine part is subjected to both variable normal stress and a variable shear stress, 

then it is designed by using the following two theories of combined stresses:  

• Maximum shear stress theory. 

• Maximum normal stress theory.  

In practice, the machine elements are subjected to combined bending and torsional stresses 

which are cyclic. In case of two dimensional stresses, each of the stresses may have two 

components –mean and variable. In such cases, equivalent normal stress component and 

equivalent shear stress component are calculated. 

 

Combined Axial and bending fatigue loading: 

 

 

𝜎𝑒𝑞−𝑛(𝑎𝑥𝑖𝑎𝑙) =  𝜎𝑚 + (
𝜎𝑦

𝜎𝑒𝑛

)
𝐾𝑡𝑓  𝜎𝑎

𝐴 × 𝐵 × 𝐶 
  

𝜎𝑒𝑞−𝑛(𝑏𝑒𝑛𝑑𝑖𝑛𝑔) =  𝜎𝑚 + (
𝜎𝑦

𝜎𝑒𝑛

)
𝐾𝑡𝑓  𝜎𝑎

𝐴 × 𝐵 × 𝐶 
 

When a component is subjected to combined axial and bending fatigue loading, 

then, the maximum equivalent normal stress is given by: 

 

𝜎𝑒𝑞 𝑚𝑎𝑥= 𝜎𝑒𝑞−𝑛(𝑎𝑥𝑖𝑎𝑙) +𝜎𝑒𝑞−𝑛(𝑏𝑒𝑛𝑑𝑖𝑛𝑔)  

Design will be based on maximum normal stress theory. 

 

𝜎𝑒𝑞 𝑚𝑎𝑥 = 
𝜎𝑦

𝑛
 

Combined bending and torsion fatigue loading: 

 

The equivalent normal stress component is given by: 

 

𝜎𝑒𝑞−𝑛 =  𝜎𝑚 + (
𝜎𝑦

𝜎𝑒𝑛

)
𝐾𝑡𝑓  𝜎𝑎

𝐴 × 𝐵 × 𝐶 
 

 

 

The equivalent shear stress component is given by: 

 

𝜏𝑒𝑞 =  𝜏𝑚 + (
𝜏𝑦

𝜎𝑒𝑛

)
𝐾𝑡𝑓  𝜏𝑎

𝐴 × 𝐵 × 𝐶 
  

 



 

Using Maximum shear stress theory, Maximum shear stress is calculated.  

 

𝜏𝑒𝑞  𝑚𝑎𝑥 = √(
1 

2
 𝜎𝑒𝑞−𝑛 )

2

+ (𝜏𝑒𝑞
2) 

 

Design will be based on maximum shear stress theory. 

 

𝜏𝑒𝑞 𝑚𝑎𝑥= 
𝜏𝑦

𝑛
 

 

 
Using Maximum normal stress theory, Maximum normal stress is calculated.  

 

𝜎𝑒𝑞 𝑚𝑎𝑥 =
1

2 
𝜎𝑒𝑞−𝑛 + √(

1 

2
 𝜎𝑒𝑞−𝑛 )

2

+ (𝜏𝑒𝑞
2) 

 
Design will be based on maximum normal stress theory. 

 

𝜎𝑒𝑞 𝑚𝑎𝑥 = 
𝜎𝑦

𝑛
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PROBLEMS ON COMBINED VARIABLE NORMAL STRESSES  

AND VARIABLE SHEAR STRESSES 

 

Problem 1: 

 

 
Solution: 

 

 
Consider bending load on the component: The section at the fillet is critical from the 

point of view of design as it experiences Max bending stress due to smaller diameter  

and change in cross section (point A).  

 

𝑀𝑚𝑎𝑥 = 120 × 150 = 18000 𝑁 − 𝑚𝑚 

 

𝑀𝑚𝑖𝑛 =  − 80 × 150 = −12000 𝑁 − 𝑚𝑚 

 

 

𝑀𝑚 =
𝑀𝑚𝑎𝑥 +𝑀𝑚𝑖𝑛

2
     𝑀𝑚 =

18000 −12000 

2
 = 3000 𝑁 − 𝑚𝑚 

 

𝑀𝑎 =
𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛

2
     𝑀𝑎 =

18000+12000 

2
= 15000 𝑁 − 𝑚𝑚 

 

 



𝜎𝑚 =  
32×𝑀𝑚

𝜋×d 
3                          𝜎𝑚 =  

32×3000

𝜋×d 
3  =

30573

𝑑3
 MPa 

 

𝜎𝑎 =  
32𝑀𝑎

𝜋𝑑3
                        𝜎𝑎 =  

32×15000

𝜋𝑑3
 =

152866

𝑑3
  MPa 

 
A=1 for bending,   B=0.85,   C=0.90, q=0.9   (given) 

 

Determination of Fatigue stress concentration factor: 

K
tf
 = 1+q(K

t
 -1); K

tf 
 = 1+0.9 (1.44-1)=1.396  (K

t
 is given as 1.44 in bending) 

q is notch sensitivity index. 

 
σ

y 
= Yield strength of the component = 330 MPa) 

σ
en

= Endurance strength in reversed bending= 300 MPa 

Equivalent normal stress in bending: 

 

𝜎𝑒𝑞−𝑛 (𝑏𝑒𝑛𝑑𝑖𝑛𝑔) =  𝜎𝑚 + (
𝜎𝑦

𝜎𝑒𝑛

)
𝐾𝑡𝑓  𝜎𝑎

𝐴 × 𝐵 × 𝐶 
 

 

𝜎𝑒𝑞−𝑛 bending  =  
30573

𝑑3 + (
330

300
)  

1.396

1𝑥0.85𝑥0.9

152866

𝑑3  

 

𝜎𝑒𝑞−𝑛  (𝑏𝑒𝑛𝑑𝑖𝑛𝑔) =  
337424

𝑑3
  MPa 

 
Equivalent axial stress in Tension: 

 

 
 
𝐹𝑚𝑎𝑥= +450 N (Tensile) 

𝐹𝑚𝑖𝑛= - 150 N (Compressive) 

 

𝐹𝑚 =  
𝐹𝑚𝑎𝑥+𝐹𝑚𝑖𝑛

2
 =

450−150 

2
= 150 N 

 

𝐹𝑎 =  
𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛

2
 = 

450+150

2
 = 300 N 

 

 



 

 
 

 

 

 

 

 
A=0.7 for axial loading,   B=0.85,   C=0.90, q=0.9   (given) 

 
Determination of Fatigue stress concentration factor: 

K
tf
 = 1+q(K

t
 -1); K

tf 
 = 1+0.9 (1.64-1)=1.576     (K

t
 is given as 1.64 in axial loading) 

q is notch sensitivity index. 

 

𝜎𝑒𝑞−𝑛(𝑎𝑥𝑖𝑎𝑙) =  𝜎𝑚 + (
𝜎𝑦

𝜎𝑒𝑛

)
𝐾𝑡𝑓  𝜎𝑎

𝐴 × 𝐵 × 𝐶 
 

 

𝜎𝑒𝑞−𝑛 axial =  
191

𝑑2
+ (

330

300
)  

1.576

1𝑥0.85𝑥0.9

382

𝑑2
 

 

𝜎𝑒𝑞−𝑛  𝑎𝑥𝑖𝑎𝑙  =  
1056.6

𝑑2
  MPa  

 

𝜎𝑒𝑞  𝑚𝑎𝑥 = 𝜎𝑒𝑞−𝑛 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 +  𝜎𝑒𝑞−𝑛 𝑎𝑥𝑖𝑎𝑙 =
𝜎𝑦

𝑛
 

 
337424

𝑑3
 +

1056 

𝑑2
 = 

330

2
 

 
Solving the above equation, we get d = 12.9 mm or 13 mm 

 

Problem 2:  

 

A hot rolled steel shaft is subjected to a torsional moment that varies from 330 N.m 

clockwise to 110 N.m counterclockwise and an applied bending moment at a critical 

section varies from 440 N.m to -220 N.m. The shaft is of uniform cross section and no key 

way is present at the critical section. Determine the required shaft diameter. The material 

has an ultimate strength of 550 MN/m
2
 and yield strength of 410 MN/m

2
. Take the 

endurance limit as half the ultimate strength, factor of safety of 2, Load factor  of 0.55, 

size factor of 0.85 and a surface finish factor of 0.62. 

Solution: 
 

  σ
u 
=Ultimate tensile strength of the bar = 550 MPa 

  σ
en 

 = Endurance limit in reversed bending= 0.5 x550 = 275 MPa 

   σ
y = 

 Yield strength in Tension= 410 MPa.  

𝜎𝑚 =
𝐹𝑚

𝐴
 𝜎𝑚 =

4 × 𝐹𝑚

𝜋𝑑2
 

𝜎𝑎 =
4 × 𝐹𝑎

𝜋𝑑2
 

𝜎𝑎 =  
𝐹𝑎

𝐴
 

𝜎𝑚 =
4×150

𝜋𝑑2
=

191

𝑑2
 MPa 

𝜎𝑎 =
4×300 

𝜋𝑑2
=  

382

𝑑2
 MPa 



   K
ft
 = K

t
 =1 since there is no stress concentration;  

 

Equivalent shear stress in Torsion: 

 

𝑇𝑚 =
𝑇(max)+𝑇(𝑚𝑖𝑛)

2
=

330+(−110)

2
= 110 𝑁. 𝑚 = 110 × 103 N-mm 

 

𝑇𝑎 =
𝑇(max)−𝑇(𝑚𝑖𝑛)

2
=

330−(−110)

2
= 220 𝑁. 𝑚 = 210 × 103 N-mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A=1 for bending,   B=0.85,   C=0.62    (given) 

 

Mean shear stress,𝜏𝑚 =
16𝑇𝑚

𝜋𝑑3
=

16(110×103)

𝜋𝑑3
 =

560×103

𝑑3
 MPa 

Variable shear stress, 𝜏𝑎 =
16𝑇𝑎

𝜋𝑑3 =
16(220×103)

𝜋𝑑3  =
1120×103

𝑑3  MPa 

𝝉𝒚=Yield strength in shear is 0.5𝝈𝒚 = 𝟎. 𝟓 × 𝟒𝟏𝟎 = 𝟐𝟎𝟓 𝑴𝑷𝒂.   

A=0.55 for bending,   B=0.85,   C=0.62,    (given) 

𝜏𝑒𝑞 =  𝜏𝑚 + (
𝜏𝑦

𝜎𝑒𝑛
)  

 𝐾𝑡𝑓 𝜏𝑎

𝐴𝐵𝐶
 

𝜏𝑒𝑞 =  
560×103

𝑑3 + (
205

275
)  

1

0.55×0.85×0.62
  

1120×103

𝑑3  

𝟑𝟒𝟒𝟎×𝟏𝟎𝟑

𝒅𝟑  MPa 

 

𝝉𝒆𝒒  = 

For bending moment, 

𝑀𝑚 =
𝑀(max)+𝑀(𝑚𝑖𝑛)

2
=

440+(−220)

2
= 110𝑁. 𝑚 = 110 × 103 N-mm 

𝑀𝑎 =
𝑀(max)−𝑀(𝑚𝑖𝑛)

2
=

440−(−220)

2
= 330𝑁. 𝑚 = 330 × 103 N-mm 

Mean bending stress,𝜎𝑚 =
32𝑀𝑚

𝜋𝑑3 =
32(110×103)

𝜋𝑑3  =
1120×103

𝑑3   MPa 

and Variable bending stress, 𝜎𝑎 =
32×𝑀𝑎

𝜋𝑑3 =
32(330×103)

𝜋𝑑3  =
3360×103

𝑑3  MPa 



 

 

 

        σeq−n =  
110 × 103

d3
 + (

205

275
)

1 × 330 × 103

1 × 0.85 × 0.62 × d3
 

 

𝝈𝒆𝒒−𝒏 =
𝟏𝟎𝟔𝟐𝟔

𝒅𝟑   MPa 

A. Determine the diameter of the shaft using the Maximum shear stress theory. 
 

 

 

 

 

  

 

 
 
 
 
 
 
B. Determine the diameter of the shaft using the Maximum normal stress theory. 
 

 

 

 

    

 

  

 

 

 

 

 

 

𝜎𝑒𝑞−𝑛 =  𝜎𝑚 + (
𝜎𝑦

𝜎𝑒𝑛
)  

𝐾𝑡𝑓  𝜎𝑎

𝐴𝐵𝐶
 

𝜏𝑒𝑞 𝑚𝑎𝑥 = √(
1 

2
 𝜎𝑒𝑞−𝑛 )

2

+ (𝜏𝑒𝑞
2) 

𝝉𝒆𝒒 𝒎𝒂𝒙 = √(
1 

2
 

10626×103

𝑑3 )
2

+ (
3440×103

𝑑3 ) =  
𝟔𝟏𝟕𝟕×𝟏𝟎𝟑

𝒅𝟑  

𝜎𝑒𝑞 𝑚𝑎𝑥 =
1

2 
𝜎𝑒𝑞−𝑛 + √(

1 

2
 𝜎𝑒𝑞−𝑛 )

2

+ (𝜏𝑒𝑞
2) 

𝜎𝑒𝑞 𝑚𝑎𝑥 =
1

2 

10626

𝑑3
+ √(

1 

2
 
10626 × 103

𝑑3
)

2

+ (
3440 × 103

𝑑3
) 

𝜎𝑒𝑞 𝑚𝑎𝑥 = 
𝜎𝑦

𝑛
 = 

400

2
 

11490×103

𝑑3
= 200  

 
d= 38.5 mm, choose the bigger value; d= 39.2 mm or 40 mm  

𝜏𝑒𝑞 𝑚𝑎𝑥= 
𝜏𝑦

𝑛
 

𝟔𝟏𝟕𝟕×𝟏𝟎𝟑

𝒅𝟑 =
205

2
 

d=39.2 mm 



Cumulative Fatigue Damage: 

 

In certain applications, the mechanical component is subjected to different stress levels for 

different parts of work cycle. The life of such a component is determined by MINER’S rule. 

Suppose that a component is subjected to completely reversed stresses σ
1 

 for n1 cycles, σ
2 

 

for n2 cycles and so on.  Let N1 be the number of stress cycles before fatigue failure when 

only σ
1
 is acting. One stress cycle will consume (1/N1) of the failure life and since there are 

n1 such cycles at this stress level, the percentage damage of fatigue life will be (1/N1)n1 or 

(n1/ N1).  Similarly, the proportionate damage at stress level σ
2 

 is (n2/ N2).  

 

 

                                 

According to this hypothesis, the rupture occurs when the sum of fractions of damage (C) , 

defined only by the consumed cycles (ni/Ni), at various load levels, reaches unity.  

 

 C=
𝑛1

𝑁1
+

𝑛2

𝑁2
+

𝑛3

𝑁3
+ − − −

𝑛𝑥

𝑁𝑥
= 1;  this is known as Miner’s equation. 

 

Sometimes, the number of cycles n1, n2, n3---- at stress cycles σ
1, 

σ
2,

 σ
3
 are unknown. 

Suppose that α1, α2, α3 ---- are the portions of the total life that will be consumed by the 

stress levels σ
1
, σ

2 , 
σ

3 
--- etc. 

 

Let N be the total life of the component. 

 

Then, n1= α1 N, n2= α2 N, n3= α3 N. 

 

[If a part is stressed for 3,000 cycles at a stress level which would cause failure in 100,000 

cycles, 3 percent of the fatigue life would be expended.  

∴ 𝛼1 =
3000

100000
= 0.03  

Repeated stress at another stress level would consume another similarly calculated portion of 

the fatigue life.]  

 

 

 



Substituting the values in Miner’s equation, 

 
𝛼1

𝑁1
+

𝛼2

𝑁2
+

𝛼3

𝑁3
+------------

𝛼𝑥

𝑁𝑥
=

1

𝑁
 

 

Also, 

𝛼1 + 𝛼2 + 𝛼3 +----- 𝛼𝑥 = 1 

 

With the help of the above equation, the life of the components subjected to different stress 

levels can be determined. 

 

Problem: 

 

Tests show that the median life of bearings operating at high frequency to be 2x10
8  

cycles under 1 kN load and 3x10
7  

cycles under 2 kN load. How many cycles the we can 

expect the bearing to last if 1 kN load operates 90% of the time and 2 kN load operates 

during the remaining 10% of the time? 
 

Solution:  
Let the total number of cycles (life) be N. 

α1= Portion of the total life consumed by 1 kN load = 0.9 

The number of cycles n1 for 1kN load= α1xN= 0.9N 

α2 = Portion of the total life consumed by 2 kN load = 0.1 

 

The number of cycles n2 for 2kN load= α2xN= 0.1N 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

𝒏𝟏

𝑵𝟏
+

𝒏𝟐

𝑵𝟐
+

𝒏𝟑

𝑵𝟑
+ − − −

𝒏𝒙

𝑵𝒙
= 𝟏  

According to the Miners Equation,  

In this case, 
𝒏𝟏

𝑵𝟏
+

𝒏𝟐

𝑵𝟐
= 1  

 

Where N1= Failure life of the bearing when only 1 kN load acts= 2x10
8   cycles  

           N2= Failure life of the bearing when only 2 kN load acts= 3x10
7     

cycles  

Substituting the above values in Miners equation, 

 
0.9𝑁

2×108+
0.1𝑁

3×107 = 1 

 

N= 1.3 x10
8 

cycles 



PROBLEMS FOR PRACTICE: 

 

 

 

 

 

 

 

 

 

 

 

 

5. A round rod of diameter 1.2d is reduced to a diameter d with a fillet radius of 0.1d. 

This stepped rod is to sustain a twisting a twisting moment that fluctuates between  

+2.5 kN-m and +1.5 kN-m together with a bending moment that fluctuates between 

+1kN-m to – 1kN-m. The rod is made of carbon steel (𝜎𝑦=330 MPa and 𝜎𝑢=620 MPa) 

Determine the diameter ‘d’ of the rod. Take the load factor =1 for bending 0.6 for torsion. 

Size and surface finish factor= 0.85. Factor of safety=2. 

 

4. A connecting rod is subjected to an axial load that fluctuates between 120 kN 

in tension to 60 kN in compression. The material has a yield strength of 360 MPa, 

and normal endurance stress of 300 MPa. Taking the factor of safety as 2.1,  

find a suitable diameter of the connecting rod. 


