

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

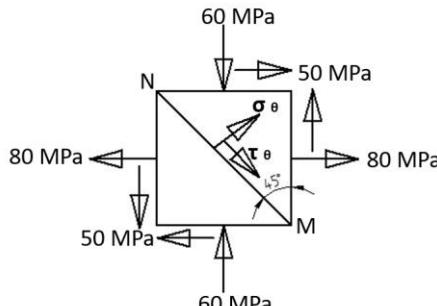
June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Mechanical Engineering

Duration: 3 hrs.


Course Code: 19ME4DCDM1

Max Marks: 100

Course: Design of Machine Elements - 1

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Use of Design Data Handbooks allowed.
 3. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define the following: (i) Factor of safety, (ii) Normal stress & (iii) Principal stresses.	CO1	PO1	06
	b)	A shaft is stepped down from 80 mm diameter to 40 mm diameter with a fillet radius of 6 mm. Determine the maximum stress induced in the shaft using stress concentration factor when subjected to: (i) Bending moment of 200 Nm. (ii) Twisting moment of 400 Nm.	CO1	PO2	06
	c)	A point in a structural member subjected to plane stress is shown in Fig. 1b . Determine the following: (i) Normal and tangential stress intensities on plane MN inclined at an angle of 45° , (ii) Principal stresses and their directions and (iii) Maximum shear stress.	CO1	PO2	08
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.					
OR					
2	a)	Explain the following theories of failure: (i) Maximum normal stress theory and (ii) Maximum shear stress theory.	CO1	PO1	06
	b)	A rod of circular section is to sustain a torsional moment of 300 kN-m and bending moment 200 kN-m. Selecting 45C8 steel	CO1	PO2	08

Fig. 1b

		($\sigma_{yt} = 353$ MPa) and assuming factor of safety = 3, determine the diameter of the rod as per the following theories of failure: (i) Maximum shear stress theory, & (ii) Distortion energy theory.			
	c)	A beam of 300 mm depth 'I' section is resting on two supports 5 m apart. It is loaded by a weight of 5000 N falling through a height 'h' and striking the beam at midpoint. Moment of inertia of the section is 9.6×10^7 mm ⁴ . Modulus of elasticity $E=21 \times 10^4$ N/mm ² . Determine the permissible value of 'h' if the stress is limited to 130 N/mm ² .	CO1	PO2	06
UNIT - II					
3	a)	Derive the modified Soderberg equation.	CO2	PO1	06
	b)	A circular bar of 500 mm length is supported freely at its two ends. It is acted centrally by a concentrated cyclic load having a minimum value of 20 kN and a maximum value of 50 kN. Determine the diameter of the bar by taking a factor of safety of 1.5, size factor of 0.85, surface finish factor of 0.9. The material properties of the bar are given by: ultimate strength of 650 MPa, yield strength of 500 MPa and endurance strength of 350 MPa.	CO2	PO2	14
OR					
4	a)	Derive the Goodman's relation for the members subjected to variable stresses.	CO2	PO1	06
	b)	A cold drawn steel rod of circular section is subjected to a variable bending moment of 565 Nm to 1130 Nm as the axial load varies from 4500 N to 13,500 N. The maximum bending moment occurs at the same instant as that of maximum axial load. Determine the required diameter of the rod for a factor of safety 2. Neglect stress concentration and column effect. Take σ_u as 550 MPa and σ_y as 470 MPa, endurance limit as 50 % of the ultimate strength and size, load and surface correction factors are 0.85, 1.0 and 0.85 respectively.	CO2	PO2	14
UNIT - III					
5		A solid steel shaft running at 600 rpm is supported on bearings 600 mm apart. The shaft receives 40 kW through a 400 mm diameter pulley weighing 400 N located 300 mm to the right of left bearing by a vertical flat belt drive. The power is transmitted from the shaft through another pulley of diameter 600 mm weighing 600 N located 200 mm to the right of right bearing. The belt drives are at right angles to each other and ratio of belt tensions is 3. Determine the size of shaft necessary, if the allowable shear stress in the shaft material is 40 MPa and the loads are steady.	CO3	PO3	20

OR					
6	a)	Design a socket and spigot type of cotter joint to sustain an axial load of 100 kN. The material for the joint has an allowable tensile and compressive stress of 100 MPa and 150 MPa respectively. The allowable shear stress is 60 MPa.	CO3	PO3	10
	b)	Design a protected type flange coupling to transmit 30 kW at 200 rpm. The allowable shear stress in the shaft and key material is 40 MPa. The maximum torque transmitted is to be 20% greater than the full load torque. The allowable shear stress in the bolt material is 60 MPa and allowable shear stress in the flange is 40 MPa.	CO3	PO3	10
UNIT - IV					
7	a)	Design a double riveted butt joint to connect two plates of 20 mm thick. The joint is zig-zag riveted and has equal width cover plates. The allowable tensile stress for the plate is 100 MPa. The allowable shear and crushing stresses for rivet material are 60 MPa and 120 MPa respectively. Calculate the efficiency of the joint. The joint should be leak proof.	CO3	PO3	10
	b)	A plate of 80 mm width and 10 mm thickness is to be welded to another plate by means of two parallel fillet welds. The plates are subjected to a load of 50 kN. Find the length of weld so that maximum stress does not exceed 50 N/mm ² . Consider the joint under static loading and then under dynamic loading.	CO3	PO2	10
OR					
8	a)	A double riveted lap joint is to be made between 9 mm plates. If the safe working stresses in tension, crushing and shear are 80 N/mm ² , 120 N/mm ² and 60 N/mm ² respectively, design the riveted joint. Assume chain type of riveting.	CO3	PO3	10
	b)	A plate of 80 mm wide and 15 mm thick is joined with another plate by a single transverse weld and a double parallel weld. Determine the length of parallel fillet weld if the joint is subjected to both static and fatigue loading. Take $\sigma_t = 90$ MPa and $\tau = 55$ MPa as the allowable stresses. Take maximum tensile load as equal to the strength of plate.	CO3	PO2	10
UNIT - V					
9	a)	A flat circular plate is used to close the flanged end of a pressure vessel of internal diameter 300 mm. The vessel carries a fluid at a pressure of 0.7 N/mm ² . A soft copper gasket is used to make the joint leak proof. Twelve bolts are used to fasten the cover plate onto the pressure vessel. Find the size of bolts so that the stress in the bolts is not to exceed 100 N/mm ² .	CO3	PO2	08

	b)	<p>A triple threaded power screw used in a screw jack, has nominal diameter of 50 mm and a pitch of 8 mm. The threads are square shape and the length of the nut is 48 mm. The screw jack is used to lift a load of 7.5 kN. The coefficient of friction at the threads is 0.12 and the collar friction is negligible. Calculate:</p> <ul style="list-style-type: none"> (i) Principal shear stress in the screw rod. (ii) Transverse shear stress in the screw and nut. (iii) Unit bearing pressure for threads and (iv) State whether the screw is self-locking? 	CO3	PO2	12
		OR			
10	a)	Explain the various types of stresses in threaded fasteners.	CO3	PO2	08
	b)	<p>A machine slide weighing 20 kN is raised by a double start square threaded screw at the rate of 0.84 m/min. The coefficient of friction for screw and collar is 0.12 and 0.14 respectively. The major diameter of the screw is 44 mm and the pitch is 7 mm. The outside and inside diameter of the collar at the end of the screw are 58 mm and 32 mm respectively. Calculate the power required to drive the slide. If the allowable shear stress in the screw is 30 MPa, is the screw strong enough to sustain the load.</p>	CO3	PO2	12

B.M.S.C.E. - EVEN SEMESTER