

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

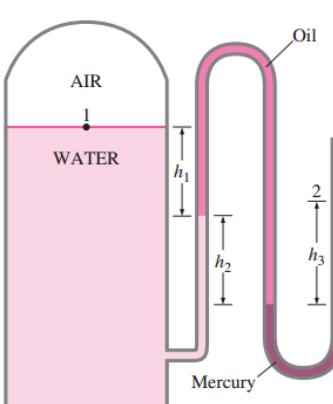
Autonomous Institute Affiliated to VTU

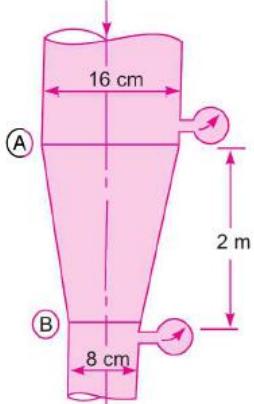
June 2025 Semester End Main Examinations

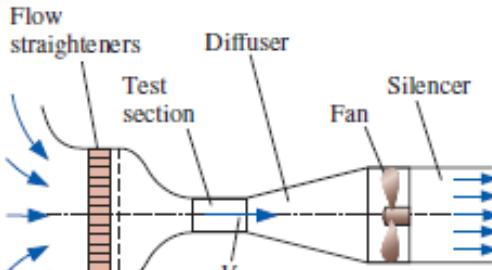
Programme: B.E.

Semester: IV

Branch: Mechanical Engineering


Duration: 3 hrs.


Course Code: 23ME4PCFME / 22ME4PCFME


Max Marks: 100

Course: Fluid Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive an expression to determine the metacentric height?	CO1	PO2	08
	b)	The water in a tank is pressurized by air, and the pressure is measured by a multi-fluid manometer as shown in fig.1. The tank is located on a mountain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. Determine the air pressure in the tank if $h_1 = 0.1$ m, $h_2 = 0.2$ m, and $h_3 = 0.35$ m. Take the densities of water, oil, and mercury to be 1000 kg/m^3 , 850 kg/m^3 , and $13,600 \text{ kg/m}^3$ respectively.	CO1	PO2	08
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.					
	c)	Find the kinematic viscosity of an oil having density 981 kg/m^3 . The shear stress at a point in oil is 0.24 N/m^2 and the velocity gradient is 0.2 per second.	CO1	PO2	04
OR					
2	a)	Derive the expression for Pascal's and hydrostatic law.	CO2	PO2	10
	b)	A wooden cylinder of specific gravity 0.6 and circular in cross-section is required to float in oil (specific gravity = 0.90). Find the L/D ratio for the cylinder to float with its longitudinal axis vertical in oil, where 'L' is the height of cylinder and 'D' is its diameter.	CO2	PO2	10

UNIT - II					
3	a)	Define and explain, (i) Lagrangian method, (ii) Eulerian method (iii) stream lines, (iv) streak lines, and (v) time line.	CO2	PO2	10
	b)	A fluid flow field is given by, $\mathbf{V} = x^2yi + y^2zj - (2xyz + yz^2)k$. Prove that, it is a case of possible steady incompressible fluid flow. Calculate the velocity and acceleration at a point (2,1,3).	CO2	PO2	10
OR					
4	a)	Derive Bernoulli's equation and state the assumptions made.	CO2	PO2	10
	b)	In a vertical pipe conveying oil of specific gravity 0.8, two pressure gauges have been installed at A and B as shown in fig.2, where the diameters are 16 cm and 8 cm respectively. A is 2 meters above B. The pressure gauge readings have shown that the pressure at B is greater than at A by 0.98 N/cm ² . Neglecting all losses, calculate the flow rate. If the gauges at A and B are replaced by tubes filled with the same liquid and connected to a U-tube containing mercury, calculate the difference of level of mercury in the two limbs of the U-tube.	CO2	PO1	10
<p>Fig. 2</p>					
UNIT - III					
5	a)	Derive the general form of the Reynolds transport theorem.	CO3	PO1	10
	b)	A spacecraft with a mass of 12,000 kg is dropping vertically toward a planet at a constant speed of 800 m/s. To slow down the spacecraft, a solid fuel rocket at the bottom of the spacecraft is fired and combustion gases leave the rocket at a constant rate of 80 kg/s and at a velocity of 3000 m/s relative to the spacecraft in the direction of motion of the spacecraft for a period of 5 sec. Disregarding the small changes in the mass of the spacecraft determine, (a) the deceleration of the spacecraft during the time the solid fuel rocket is being fired, (b) the change in velocity of the spacecraft, and (c) the thrust exerted on the spacecraft.	CO3	PO2	10
OR					

	6	a)	Derive Hagen Poiseuille equation and state the assumptions.	CO2	PO2	10
		b)	Determine, (i) the pressure gradient, (ii) the shear stress at the wall and (iii) the discharge per meter width for the laminar flow of oil. The maximum velocity is 2 m/s between two horizontal parallel fixed plates which are 100 mm apart. Given viscosity $\mu=2.45 \text{ Ns/m}^2$.	CO3	PO2	10
			UNIT - IV			
7	a)		Explain Displacement Thickness and derive the expression for the same	CO4	PO1	08
	b)		A small low-speed wind tunnel is being designed for calibration of hot wires as shown in fig. 3. The air is at 19°C. The test section of the wind tunnel is 30 cm in diameter and 30 cm in length. The flow through the test section must be as uniform as possible. The wind tunnel speed ranges from 1 to 8 m/s, and the design is to be optimized for an air speed of $V = 4 \text{ m/s}$ through the test section. (a) For the case of nearly uniform flow at 4.0 m/s at the test section inlet, by how much will the centerline air speed accelerate by the end of the test section? Kinematic viscosity of air at 19°C is $\mu=1.507 \times 10^{-5} \text{ m}^2/\text{s}$.	CO4	PO2	08
			<p>Fig. 3</p>			
	c)		Explain the concept of 'Boundary layer separation' for the flow past a circular cylinder in a finite medium.	CO4	PO2	04
			OR			
8	a)		By order of magnitude analysis derive the Prandtl's boundary layer equations for flow over a flat plate.	CO4	PO2	10
	b)		When two things about the turbulent boundary layer over a flat plate, namely, the local skin friction coefficient, $C_{f,x} \cong \frac{0.027}{(Re_x)^{1/7}}$ and the one- seventh power law approximation for the boundary layer profile shape, $\frac{u}{U} \cong \left(\frac{y}{\delta}\right)^{1/7} \text{ for } y \leq \delta \quad \frac{u}{U} \cong 1 \quad \text{for } y > \delta$ Using the definition of displacement thickness and momentum thickness and employing the Karman integral equation, estimate δ , δ^* and θ vary with x .	CO4	PO1	10

		UNIT - V					
	9	a)	Define and explain non-dimensional numbers: (i) Reynolds number, (ii) Froude number, (iii) Euler's number, (iv) Weber's number, and (v) Mach number.	CO5	PO2	10	
		b)	The efficiency (η) of a fan depends upon density (ρ), dynamic viscosity (μ) of the fluid, angular velocity (ω), diameter of the rotator (D), and discharge (Q). Express (η) in terms of dimensionless groups. Take D , ω and ρ as repeating variables	CO5	PO2	10	
			OR				
	10	a)	At a sudden contraction in a pipe the diameter changes from D_1 to D_2 . The pressure drop, Δp , which develops across the contraction is a function of D_1 and D_2 , as well as the velocity, V , in the larger pipe, and the fluid density, ρ , and viscosity, μ . Use D_1 , V and μ as repeating variables to determine a suitable set of dimensionless parameters.	CO5	PO1	10	
		b)	Derive on the basis of dimensional analysis suitable parameters to present the thrust developed by a propeller. Assume that thrust P depends upon angular velocity ω , speed of advance V , diameter D , dynamic viscosity μ , mass density ρ , elasticity of fluid medium which can be denoted by the speed of sound in the medium C . Take D , V and ρ as repeating variables	CO5	PO2	10	

B.M.S.C.E. - EVEN SEMESTER - 2025