

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Mechanical Engineering

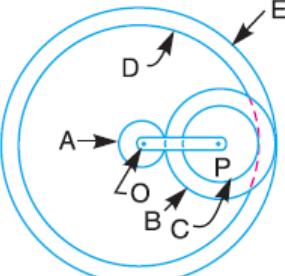
Duration: 3 hrs.

Course Code: 19ME4DCKOM

Max Marks: 100

Course: Kinematics of Machines

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.


UNIT – I						CO	PO	Marks
1	a)	Explain the following terms: (i) Kinematic link (ii) Grashof's law (iii) Higher pair (iv) Structure				<i>CO1</i>	<i>PO1</i>	08
	b)	Sketch and explain the working of an elliptical trammel. Prove that it traces an ellipse				<i>CO1</i>	<i>PO2</i>	08
	c)	Determine the degrees of freedom for the given example as shown below Fig. 1c.				<i>CO1</i>	<i>PO2</i>	04
OR								
2	a)	Explain the Whitworth quick return motion mechanism, with a neat sketch.				<i>CO1</i>	<i>PO1</i>	10
	b)	Define "Exact straight line motion". Prove that a point on the Peaucellier's mechanism traces an exact straight line.				<i>CO1</i>	<i>PO2</i>	10
UNIT – II								
3	a)	What is Coriolis component of the acceleration? Derive the expression for the same.				<i>CO1</i>	<i>PO2</i>	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

Fig. 1c

		<p>ratio of 3. The module is 3 mm and the addendum is equal to 1.1 module. If the pinion rotates at 120 rpm. Determine:</p> <p>(i) Minimum number of teeth on each wheel to avoid interference (ii) Contact ratio</p>			
		UNIT - IV			
7	a)	Sketch and explain different types of gear train.	CO3	PO1	08
	b)	<p>Fig. 7b shows diagrammatically a compound epicyclic gear train. Wheels A, D and E are free to rotate independently on spindle O, while B and C are compound and rotate together on spindle P, on the end of arm OP. All the teeth on different wheels have the same module. A has 12 teeth, B has 30 teeth and C has 14 teeth cut externally. Find the number of teeth on wheels D and E which are cut internally. If the wheel A is driven clockwise at 1r.p.s. while D is driven counter clockwise at 5 r.p.s., determine the magnitude and direction of the angular velocities of arm OP and wheel E.</p>	CO3	PO2	12
		Fig. 7b			
		OR			
8	a)	Explain with a neat sketch of sun and planet type gear train.	CO3	PO1	08
	b)	<p>In an epicyclic gear train, the internal wheels A, B and compound wheel C & D rotate independently about the axis 'O'. The wheel E and F rotate on a pin fixed to the arm G. E gears with A and C, and F gears with B and D. All the wheels have same pitch and the number of teeth on E and F are 18, on C=28 and on D= 26.</p> <p>(i) Sketch the arrangement (ii) Find the number of teeth on A and B. (iii) If the arm G makes 150 rpm in clockwise direction and A is fixed, find the speed of gear.</p>	CO3	PO2	12
		UNIT - V			
9	a)	Briefly discuss the various types of followers used for cam profile.	CO4	PO1	06
	b)	A cam rotating clockwise at uniform speed of 300 rpm operates a	CO4	PO2	14

		<p>reciprocating follower, through a roller 1.5 cm diameter. The follower motion is defined as below:</p> <ul style="list-style-type: none"> (i) Outward during 150° with UARM (ii) Dwell for next 30° (iii) Return during next 120° with SHM (iv) Dwell for the remaining period. <p>Stroke of the follower is 3 cm; minimum radius of the cam is 3cm.</p> <p>Draw the cam profile, when the follower axis passes through cam axis.</p>		
		OR		
10	a)	Discuss briefly the various types of cams.	CO4	PO1 08
	b)	Draw the profile of a cam operating a knife-edge follower having a lift of 30 mm. The cam raises the follower with SHM for 150° of the rotation followed by a period of dwell for 60° . The follower descends for the next 100° rotation of the cam with uniform velocity, again followed by a dwell period. The cam rotates at a uniform velocity of 120 rpm and has a least radius of 20 mm. What will be the maximum velocity and acceleration of the follower during the lift and the return?	CO4	PO2 12
