

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

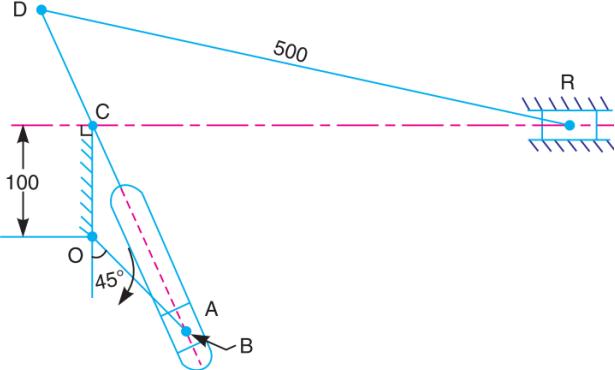
Programme: B.E.

Semester: IV

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 19ME4DCKOM


Max Marks: 100

Course: Kinematics of Machines

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the various types of kinematic pairs. Provide examples for each type.	CO1	PO1	06
	b)	Define Kutzbach's criterion for determining the degree of freedom in a plane mechanism.	CO1	PO1	06
	c)	In what way Oldham's coupling is useful in connecting two shafts when the distance between their axes is small	CO1	PO1	08
OR					
2	a)	With the mathematical proof, describe the complete working of a Peaucellier mechanism.	CO1	PO1	06
	b)	Explain in detail with a neat figure, the mechanism used in shaper machines which helps in minimizing the cutting time by increasing the speed of the idle stroke of the shaping-tool.	CO1	PO1	07
	c)	Which mechanism is being used in stone crushing machine and with a neat sketch explains the construction and working of the same?	CO1	PO1	07
UNIT - II					
3		An engine mechanism is shown in Fig.1. The crank CB = 100 mm and the connecting rod BA = 300 mm with centre of gravity G, 100mm from B. In the position shown, the crankshaft has a speed of 75 rad/s and an angular acceleration of 1200 rad/s ² . Find: (i) velocity of G and angular velocity of AB, and (ii) acceleration of G and angular acceleration of AB.	CO1	PO2	20
		Fig. 1			
OR					
4	a)	Derive the expression of coriolis component of acceleration.	CO1	PO1	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>In a Whitworth quick return motion, as shown in Fig. 2. OA is a crank rotating at 30 rpm. in a clockwise direction. The dimensions of various links are: OA = 150 mm; OC = 100 mm; CD = 125 mm; and DR = 500 mm. Determine the angular velocity of BC, the acceleration of the sliding block R and the angular acceleration of the slotted lever CA.</p> <p>All dimensions in mm.</p> <p>Fig. 2</p>	CO1	PO2	14
5	a)	<p>With a neat sketch, describe the procedure for determining the velocities of links in a slider crank chain mechanism by using Klein's construction method.</p>	CO1	PO1	10
	b)	<p>Two 20^0 involute spur gears mesh externally and give the velocity ratio of 3. The module is 3mm and addendum is equal to 1.1 module. If the pinion rotates at 120rpm, determine:</p> <ol style="list-style-type: none"> the minimum number of teeth on each wheel to avoid interference contact ratio 	CO2	PO2	10
UNIT - IV					
6	a)	<p>Compare simple and compound gear trains in terms of their design.</p>	CO3	PO1	04
	b)	<p>In an epicyclic gear train, the internal wheels A & B and compound wheels C & D rotate independently about axis O. The wheels E & F rotate on pins fixed to the arm G. E gears with A & C and F gears with B & D. All the wheels have the same module and the numbers of teeth are $T_c = 28$; $T_d = 26$; $T_e = T_f = 18$.</p> <ol style="list-style-type: none"> Sketch the arrangement; Find the number of teeth on A and B; If the arm G makes 100r.p.m. clockwise and A is fixed, find the speed of B. 	CO3	PO2	16
UNIT - V					
7		<p>Design the cam profile for the following conditions:</p> <p>Follower type = Knife edged, in-line; lift = 50mm; base circle radius = 50mm; out stroke with SHM, for 60^0 cam rotation; dwell for 45^0 cam rotation; return stroke with SHM, for 90^0 cam rotation; dwell for the remaining period. Determine maximum velocity and acceleration during out stroke and return stroke if the cam rotates at 1000 rpm in clockwise direction.</p>	CO4	PO2	20
