

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 19ME4DCMMM

Max Marks: 100

Course: Mechanical Measurement and Metrology

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define Metrology. State its Objectives.	CO1	PO1	10
	b)	A calibrated meter end bar has an actual length of 1000.0003mm. It is to be used in the calibration of two bars A & B, each having a basic length of 500mm. When compared with the meter bar L_A+L_B was found to be shorter by 0.0002mm. In comparing A with B, it was found that A was 0.0004mm longer than B. Find the actual length of A&B.	CO1	PO1	10
OR					
2	a)	Describe with neat sketch i) Imperial standard yard ii) International Prototype meter.	CO1	PO1	10
	b)	Draw the conventional diagram of Limits and Fits. Explain the terms i) Basic size ii) Upper deviation iii) Lower deviation iv) Fundamental deviation v) Zero line.	CO2	PO2	10
UNIT - II					
3	a)	How gauges are classified. Explain in detail as per their type, purpose, tested surface and design.	CO2	PO2	10
	b)	With the help of a neat sketch, explain the working principle of a Zeiss ultra-optimeter.	CO2	PO2	10
OR					
4	a)	With the help of a neat sketch, explain the working principle of a Reed Type mechanical comparator.	CO4	PO2	10
	b)	Select the sizes of angle gauges required to build the following angles; Show the arrangement of gauges. i) $33^{\circ} 16' 42''$ ii) $57^{\circ} 34' 9''$	CO2	PO2	10

		UNIT - III			
5	a)	Explain the following terms; i) Hysteresis in measurement system ii) Linearity in measurement system iii) Loading effect iv) System response.	CO4	PO2	10
	b)	With a block diagram, explain the three stages of a generalized measurement system.	CO4	PO2	10
OR					
6	a)	With a block diagram, explain the working of a general-purpose Cathode-Ray Oscilloscope (CRO).	CO3	PO2	10
	b)	With the necessary circuit diagram, explain the working of a ballast circuit.	CO3	PO2	10
UNIT - IV					
7	a)	With the help of a neat sketch, explain the working of an analytical balance.	CO4	PO2	10
	b)	With a block diagram show the arrangement of resistance bridge for strain measurement. Explain in detail.	CO5	PO2	10
OR					
8	a)	Describe with neat diagram of Prony Brake dynamometer.	CO3	PO2	10
	b)	Explain the construction and working of an optical pyrometer with the help of a schematic diagram.	CO4	PO2	10
UNIT - V					
9	a)	Illustrate the constructional features of a Universal Measuring machine with neat diagram.	CO5	PO2	10
	b)	Describe with neat sketches of basic configuration of a Coordinate Measuring Machine.	CO4	PO2	10
OR					
10	a)	Describe with neat sketch Transmission electron microscopy.	CO4	PO2	10
	b)	With the help of a sketch, explain the working principle of Scanning Electron Microscope.	CO4	PO2	10
