

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## September / October 2024 Supplementary Examinations

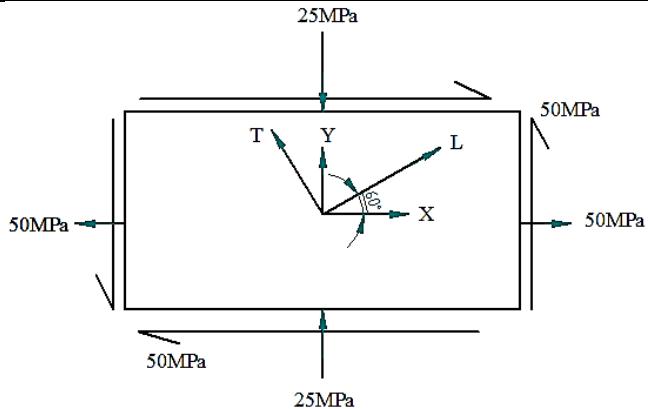
**Programme: B.E.**

**Branch: Mechanical Engineering**

**Course Code: 20ME5DECMT**

**Course: Composite Material Technology**

**Semester: V**


**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| <b>UNIT - I</b>   |    |                                                                                                                                                                               | <b>CO</b>  | <b>PO</b>   | <b>Marks</b> |
|-------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|--------------|
| 1                 | a) | Write the classification and characteristics of composite materials.                                                                                                          | <i>CO1</i> | <i>PO5</i>  | <b>10</b>    |
|                   | b) | With a neat sketch explain the hand layup technique.                                                                                                                          | <i>CO1</i> | <i>PO6</i>  | <b>10</b>    |
| <b>OR</b>         |    |                                                                                                                                                                               |            |             |              |
| 2                 | a) | Write the difference between open and closed mould process.                                                                                                                   | <i>CO2</i> | <i>PO6</i>  | <b>10</b>    |
|                   | b) | With a neat sketch explain the injection molding process.                                                                                                                     | <i>CO2</i> | <i>PO8</i>  | <b>10</b>    |
| <b>UNIT - II</b>  |    |                                                                                                                                                                               |            |             |              |
| 3                 | a) | Derive the equation of the in-plane shear Modulus of a unidirectional lamina.                                                                                                 | <i>CO3</i> | <i>PO5</i>  | <b>10</b>    |
|                   | b) | Derive the equation of the Major and minor Poisson's ratio of a unidirectional lamina.                                                                                        | <i>CO3</i> | <i>PO6</i>  | <b>10</b>    |
| <b>UNIT - III</b> |    |                                                                                                                                                                               |            |             |              |
| 4                 | a) | State and explain Tsai-Hill theory of a lamina.                                                                                                                               | <i>CO3</i> | <i>PO8</i>  | <b>10</b>    |
|                   | b) | Predict the life of the Glass /epoxy lamina. By maximum strain theory. ( $\Theta=60^0$ ).<br>Given : $E_1 = 38.6$ GPa; $E_2 = 8.27$ GPa; $G_{12} = 4.14$ GPa; $V_{12} = 0.26$ | <i>CO5</i> | <i>PO10</i> | <b>10</b>    |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.



**Fig. 4(b):** Applied stress in a lamina

$$\begin{aligned}
 (\sigma_1^T)_{ult} &= 1062 \text{ MPa} \\
 (\sigma_1^C)_{ult} &= 610 \text{ MPa} \\
 (\sigma_2^T)_{ult} &= 31 \text{ MPa} \\
 (\sigma_2^C)_{ult} &= 118 \text{ MPa} \\
 (\tau_{12})_{ult} &= 72 \text{ MPa}
 \end{aligned}$$

**OR**

5 a) Explain in details on Non-Interactive failure criteria and its types.

*CO2* *PO5* **10**

b) State and explain Wu tensor theory of a lamina.

*CO4* *PO6,8* **10**

**UNIT - IV**

6 a) Decode the types of laminates given below by drawing the stack up sequence diagram.

- (i)  $[45|\pm 45|-45|0]$
- (ii)  $[45|0|90]2s$
- (iii)  $[45|0|\pm 60|30]$
- (iv)  $[0_B|\pm 45_{Gr}|90_{Gr}]s$
- (iv)  $[45|0|45|90_2|30]$

*CO3* *PO10* **05**

b) Derive an expression for the three stiffness matrices  $[A]$ ,  $[B]$  and  $[D]$  for a 2D laminate composite.

*CO6* *PO8* **15**

**UNIT - V**

7 a) List out the various reinforcement materials and explain any four briefly.

*CO1* *PO8* **10**

b) With a neat sketch explain liquid metallurgy technique.

*CO1* *PO10* **10**

\*\*\*\*\*