

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester : V

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 20ME5DEICE

Max Marks: 100

Course: Internal Combustion Engines

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	List out the various simplified assumptions used in fuel-air cycle analysis.	CO1	PO1	06
	b)	Explain with the help of a p-V diagram the loss due to variation of specific heats and effect of dissociation in an Otto cycle.	CO1	PO2	08
	c)	What will be the effect on the efficiency of an Otto cycle having a compression ratio of 8, if Cv increases by 1.6%?	CO1	PO3	06
OR					
2	a)	Explain the effect of compression ratio and fuel air ratio on engine performance better understood by fuel-air cycle analysis.	CO1	PO2	10
	b)	A petrol engine having a compression ratio of 6 uses a fuel with calorific value of 42 MJ/kg. The air-fuel ratio is 15:1. Pressure and temperature at the start of the suction stroke is 1 bar and 57 °C respectively. Determine the maximum pressure in the cylinder if the index of compression is 1.3 and the specific heat at constant volume is given by $Cv = 0.678 + 0.00013 T$, where T is in Kelvin.	CO1	PO3	10
UNIT - II					
3	a)	Explain different air-fuel mixture on which an engine can be operated and their effect on the engine performance.	CO2	PO1	06
	b)	Explain various component of electronic fuel injection system	CO2	PO1	08
	c)	Draw a schematic diagram of fuel feed pump and explain its working principle.	CO2	PO2	06
OR					
4	a)	Explain the factors that affect the process of carburetion.	CO3	PO1	08
	b)	Automotive Engine requires rich Air-Fuel mixture for the following cases: (i) idling (ii) maximum power and (iii) sudden	CO3	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		acceleration. Justify			
	c)	Draw a neat sketch of CRDI system.	CO3	PO1	04
UNIT - III					
5	a)	Bring out clearly the process of ignition delay illustrating Pressure-time diagram for CI engine	CO3	PO2	08
	b)	Explain the phenomenon of knock in CI engines and compare it with SI engine knock	CO3	PO1	08
	c)	Briefly explain how smooth Engine Operation of SI engines is ensured.	CO3	PO1	04
OR					
6	a)	Briefly explain the stages of combustion in SI engines with neat sketch	CO3	PO1	08
	b)	Explain the various factors that influence the flame speed	CO3	PO1	08
	c)	Explain the importance of HUCR	CO3	PO1	04
UNIT - IV					
7	a)	List out and draw various types of combustion chambers used in SI engines. Explain working principle of any two.	CO4	PO1	06
	b)	Explain with figures the various types of combustion chambers used in CI engines.	CO4	PO1	08
	c)	Explain with a figure the variation of gas temperature during a cycle.	CO4	PO2	06
OR					
8	a)	Give the general chemical formula of the following fuels: (i) Paraffin (ii) Olefin (iii) Naphthene (iv) Aromatic and their molecular arrangement. Also mention whether they are saturated or unsaturated.	CO4	PO1	10
	b)	Explain alcohols as alternate fuels for IC engines bringing out their merits and demerits.	CO4	PO1	10
UNIT - V					
9	a)	Draw the graph of quantity of engine emissions as a function of equivalence ratio and explain.	CO5	PO1	10
	b)	Compare Bharat stage 4 and Bharat stage VI emission norms of IC engine.	CO5	PO2	10
OR					
10	a)	Discuss suitability and the salient characteristics of multi fuel engine	CO5	PO1	08
	b)	Discuss briefly the principle of following engines with sketches i) Rotary piston engines, ii) Stratified engine and iii) Multiple injection system.	CO5	PO2	12
