

B.M.S. College of Engineering, Bengaluru-560019

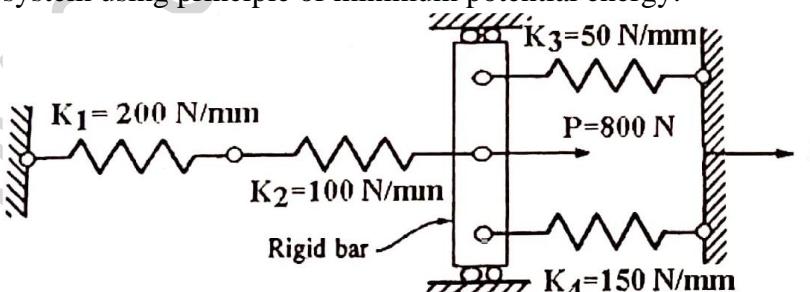
Autonomous Institute Affiliated to VTU

May 2024 Semester End Make-Up Examinations

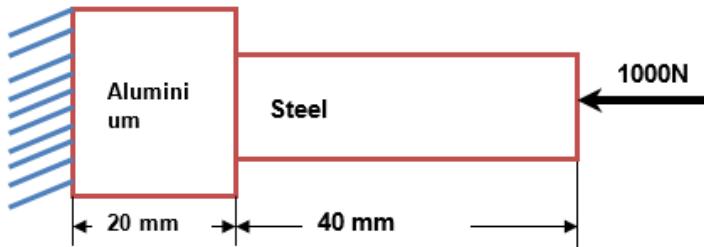
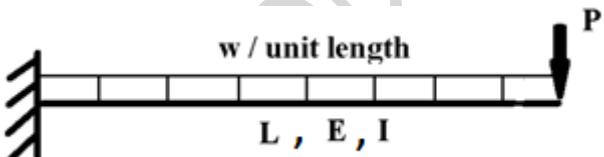
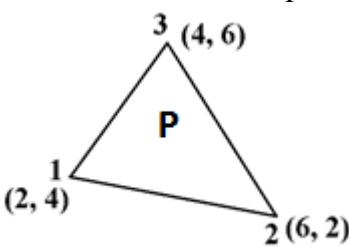
Programme: B.E.

Branch: Mechanical Engineering

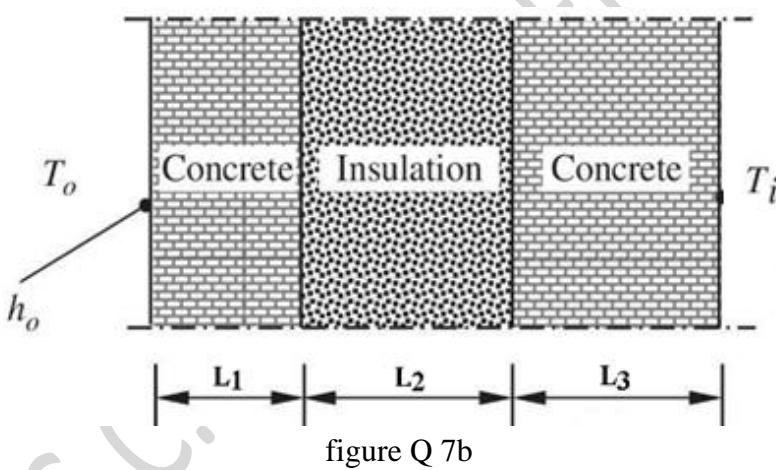
Course Code: 22ME5PCMFE


Course: Modelling and Finite Element Analysis

Semester: V




Duration: 3 hrs.

Max Marks: 100


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Write the following in matrix form:</p> <ul style="list-style-type: none"> i) Equilibrium equations in 3D ii) Strain-displacement relations in 3D iii) Stress-strain relations in 3D iv) Stress-strain relations for Plane stress condition 	CO1	PO1 PO2	08
	b)	Using the Rayleigh-Ritz method, obtain an expression for deflection of a simply supported beam with a point load at the centre.	CO1	PO1 PO2	10
	c)	Citing example, differentiate essential and non-essential boundary conditions.	CO1	PO1 PO2	02
OR					
2	a)	<p>Determine the nodal displacements for the following spring system using principle of minimum potential energy.</p>	CO1	PO1 PO2	10
	b)	Evaluate the following integral with suitable Gauss quadrature. Verify the answer with analytical solution.	CO1	PO1 PO2	08
	c)	$I = \int_0^3 (1 + 2r + 3r^2 + 4r^3) dr$	CO1	PO1	02

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II					
3	a)	Formulate the element stiffness matrix for a 2-noded bar element with 1 dof at each node.	CO2	PO1 PO2	08
	b)	Determine displacement field, support reaction and stresses for the stepped bar shown in fig 3b. $A_{AL} = 40 \text{ mm}^2$, $E_{AL} = 70 \times 10^3 \text{ N/mm}^2$, $A_{ST} = 20 \text{ mm}^2$, $E_{ST} = 200 \times 10^3 \text{ N/mm}^2$.	CO2	PO1 PO3	12
 Figure 3b					
UNIT - III					
4	a)	Derive the element stiffness matrix for 2-noded plane truss element.	CO3	PO1 PO2	06
	b)	For the beam loaded as shown in Figure 5b, determine the nodal unknowns and reactions. $E=200 \text{ GPa}$, $I=10 \times 10^{-4} \text{ m}^4$. Take $L=3 \text{ m}$, $w=10 \text{ N/m}$, $P=50 \text{ kN}$	CO3	PO1 PO2	14
UNIT - IV					
5	a)	The nodal coordinates of the triangular element are shown in figure 6a below. At point P inside the element, x coordinate is 3.3 and the shape function $N_1=0.3$. Determine the shape functions N_2 , N_3 and the Y coordinate of point P.	CO4	PO1 PO2	08
 figure 6a					
	b)	Sketch 2D constant strain element indicating the degrees of freedom. Obtain expressions: i) Shape functions, ii) Jacobian & iii) Strain-displacement matrix	CO4	PO1 PO2	12

OR					
6	a)	Formulate shape functions for Quadratic Bar Element.	<i>CO4</i>	<i>PO1</i> <i>PO2</i>	06
	b)	Sketch 9-noded quadrilateral element and Write the shape functions for the same.	<i>CO4</i>	<i>PO1</i>	08
	c)	Discuss Iso, Sub and Super-parametric elements.	<i>CO4</i>	<i>PO1</i>	06
UNIT - V					
7	a)	Derive shape functions for 2-noded one-dimensional heat transfer element in global coordinates.	<i>CO4</i>	<i>PO1</i> <i>PO2</i>	06
	b)	Consider a wall built up of concrete and thermal insulation as shown in figure Q 7b. The outdoor temperature is $T_o = -15^{\circ}\text{C}$, and the temperature inside is $T_i = 30^{\circ}\text{C}$. The wall is subdivided into three layers as shown. The thermal conductivity for concrete is $K_c = 2 \text{ W/m}^{\circ}\text{C}$ and that of the insulator is $K_i = 0.05 \text{ W/m}^{\circ}\text{C}$. Convection heat transfer is occurring at outer surface with convection coefficient of $h_o = 24 \text{ W/m}^2 \text{ }^{\circ}\text{C}$. Determine the temperature distribution across the wall. Take $L_1 = 5 \text{ cm}$, $L_2 = 25 \text{ cm}$, and $L_3 = 50 \text{ cm}$.	<i>CO4</i>	<i>PO1</i> <i>PO2</i>	14
