

B.M.S. College of Engineering, Bengaluru-560019

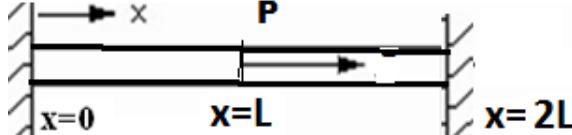
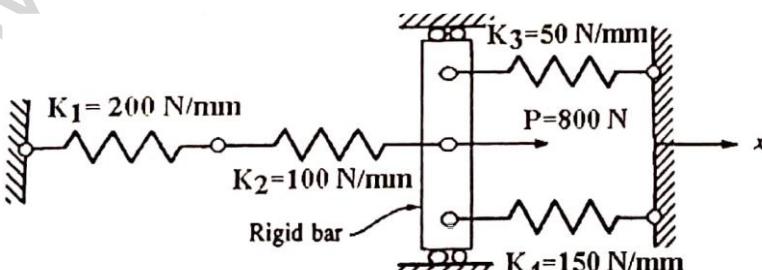
Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

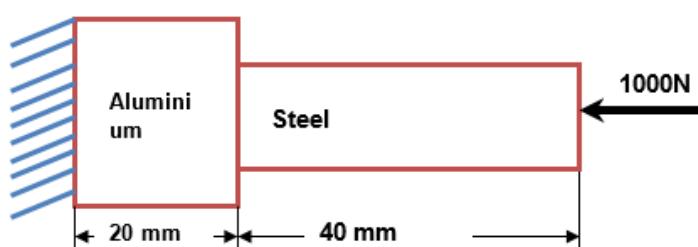
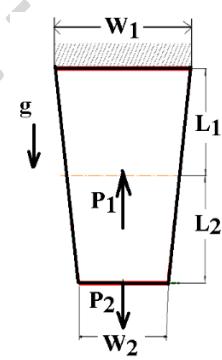
Programme: B.E.

Semester: VI

Branch: Mechanical Engineering



Duration: 3 hrs.

Course Code: 22ME5PCMFE / 20ME6DCMFE



Max Marks: 100

Course: Modelling and Finite Element Analysis

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Write the following in the matrix form</p> <ol style="list-style-type: none"> Equilibrium equations in 3D Strain-displacement relations in 3D Stress-strain relations in 3D Stress-strain relations for Plane stress condition 	CO1	PO1 PO2	08
	b)	<p>Using the Rayleigh-Ritz method obtain expressions for displacement and stress for the uniform bar shown in the fig 1. What is the maximum displacement if $P = A = L = E = 1$?</p>	CO1	PO1 PO2	12
		OR			
2	a)	<p>Determine the nodal displacements for the spring system shown in fig 2a using principle of minimum potential energy.</p>	CO1	PO1 PO2	10
	b)	<p>Evaluate the following integral with suitable Gauss quadrature. Verify the answer with analytical solution.</p> $I = \int_0^3 (1 + 2r + 3r^2 + 4r^3) dr$	CO1	PO1 PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	With suitable examples, differentiate essential and non-essential boundary conditions.	CO1	PO1 PO2	04
		UNIT - II			
3	a)	Formulate the element stiffness matrix for a 2-noded bar element with 1-dof at each node.	CO2	PO1 PO3	08
	b)	Determine displacement field, support reactions and stresses for the stepped bar shown in fig 3b. $A_{Al} = 40 \text{ mm}^2$, $E_{Al} = 70 \times 10^3 \text{ N/mm}^2$, $A_{St} = 20 \text{ mm}^2$, $E_{St} = 200 \times 10^3 \text{ N/mm}^2$.	CO2	PO1 PO3	12
		<p>Figure 3b</p>			
		OR			
4	a)	Derive shape functions for 2-noded bar element in natural coordinate system.	CO2	PO1 PO3	06
	b)	For the problem shown in figure 4b, determine the nodal displacements, element stresses and reactions. Thickness of the plate = 5 mm, $W_1=50 \text{ mm}$, $W_2=30 \text{ mm}$. Density = 8000 kg/m^3 and $E=100 \text{ GPa}$. Consider $L_1=1.5 \text{ m}$, $L_2=1.5 \text{ m}$, $P_1=70 \text{ kN}$, and $P_2=70 \text{ kN}$.	CO4 CO6	PO1 PO2	14
		<p>Figure 4b</p>			
		UNIT - III			
5	a)	Derive Hermitian shape functions for a 2-noded beam element and sketch their variation.	CO CO3	PO1 PO2	08
	b)	For the pin-jointed configuration shown in figure 5b, determine the element stiffness matrix, displacement vector, and stresses in the elements if $P = 10 \text{ kN}$.	CO CO3	PO1 PO2	12

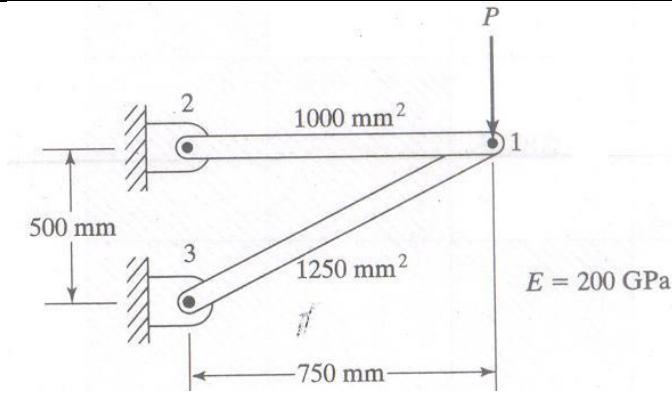


Fig 5b

OR

6 a) Derive the element stiffness matrix for 2-noded plane truss element.

CO2 PO1 **06**

b) For the beam loaded as shown in fig 6b, determine the nodal unknowns and support reactions. $E=200$ GPa, $I=10 \times 10^{-4}$ m 4 . Take $L=3$ m, $w=10$ N/m, $P=50$ kN.

CO2
CO3
PO2 **14**

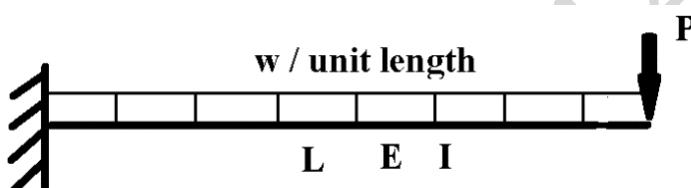


Fig. 6b

UNIT - IV

7 a) Sketch 2D constant strain element indicating the degrees of freedom. Obtain expressions for
 i) Shape functions,
 ii) Jacobian, and
 iii) Strain-displacement matrix

CO2
CO3
PO2 **12**

b) For the triangular element shown in fig 7b, determine the strains ϵ_x , ϵ_y and γ_{xy} given displacements $q_1 = 0.001$, $q_2 = -0.004$, $q_3 = 0.003$, $q_4 = 0.002$, $q_5 = -0.002$ and $q_6 = 0.005$.

CO2
CO3
PO2 **08**

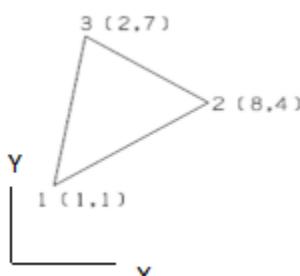
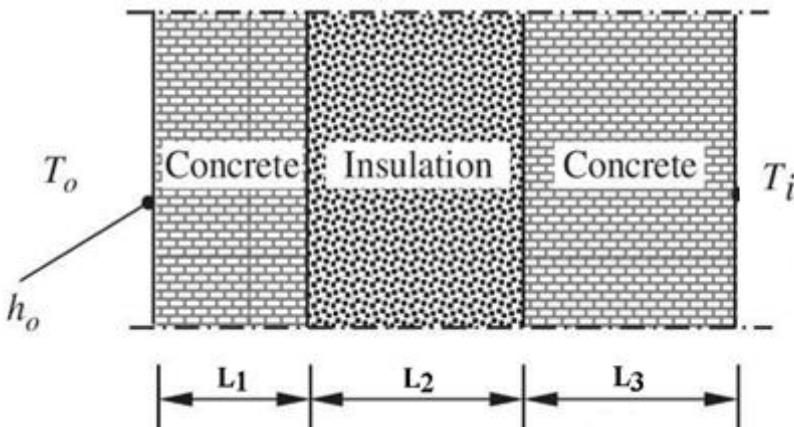
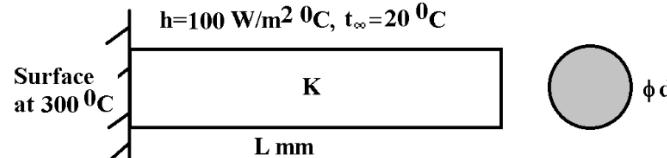




Fig.7b

OR

8 a) Formulate shape functions for 3-noded quadratic bar element,

CO4
PO1
PO2 **06**

	b)	Sketch 9-noded quadrilateral element in local coordinates. Identify nodal coordinates and write the shape functions for the same.	CO4	PO1	08
	c)	With suitable illustrations, discuss iso, sub and super-parametric elements.	CO4	PO1	06
UNIT - V					
9	a)	Derive shape functions for a 2-noded one-dimensional heat transfer element in global coordinates.	CO4	PO1 PO2	06
	b)	Consider a wall built up of concrete and thermal insulation. The outdoor temperature is $T_o = -15^\circ\text{C}$, and the temperature inside is $T_i = 30^\circ\text{C}$. The wall is subdivided into three layers as shown in fig 9b. The thermal conductivity for concrete is $K_c = 2 \text{ W/m}^\circ\text{C}$ and that of the insulator is $K_i = 0.05 \text{ W/m}^\circ\text{C}$. Convection heat transfer is occurring at outer surface with convection coefficient of $h_o = 24 \text{ W/m}^2 \text{ }^\circ\text{C}$. Obtain the temperature distribution in the wall. Take $L_1 = 5 \text{ cm}$, $L_2 = 25 \text{ cm}$, $L_3 = 50 \text{ cm}$.	CO4	PO1 PO2	14
		<p>Fig 9b</p>			
OR					
10	a)	Derive shape functions for 2-noded one-dimensional heat transfer element in natural coordinate system.	CO4	PO1 PO2	06
	b)	Determine the temperature distribution and amount of heat transfer in a rectangular fin as shown in figure 10b. Use two 2-noded 1-D heat transfer elements. Also obtain the temperature at mid-point of the 1 st element. Assume that the end face of the fin is insulated. $L=0.05 \text{ m}$, $d=0.01 \text{ m}$, $K=50 \text{ W/m}^\circ\text{C}$ Surrounding: $h=100 \text{ W/m}^2 \text{ }^\circ\text{C}$, $t_\infty=20^\circ\text{C}$	CO4	PO1 PO2	14
		<p>Fig 10b</p>			
