

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester : V

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 23ME5PCMMM / 22ME5PCMMM

Max Marks: 100

Course: Mechanical Measurements and Metrology

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With neat sketches, explain (i) International prototype meter and (ii) Imperial standard yard.	CO1	PO1	10
	b)	Differentiate between line standards and end standards with examples for each.	CO1	PO1	06
	c)	Build up a length of 35.4875 mm using M112 set. Use two protector slips of 2.5 mm each.	CO1	PO1 PO2	04
OR					
2	a)	Explain (i) Interchangeability and selective assembly (ii) Unilateral and bilateral tolerances (iii) Hole basis and shaft basis system	CO1	PO1	12
	b)	Calculate all the relevant dimensions of 35H ₇ /f ₈ fit, dimension 35 mm falls in the step of 30-50 mm. The fundamental deviation for f shaft is $-5.5D^{0.41}$. i (in microns) = $0.45(D)^{1/3} + 0.001D$, IT7=16i and IT8=25i.	CO1	PO1 PO2	08
UNIT - II					
3	a)	With relevant sketches, explain Taylor's principle of design of limit gauges.	CO2	PO1	08
	b)	Calculate the dimensions of plug & ring gauges to control the production of 50 mm shaft & hole pair of H ₇ d ₈ as per IS specifications. The following assumptions may be made: 50 mm lies in diameter step of 30-50 mm. Upper deviation for 'd' shaft is $-16D^{0.44}$ and lower deviation for hole H is zero. Tolerance unit in 'i' in microns is $=0.45\sqrt[3]{D} + 0.001D$ and IT6=10i and above IT6 grade, the tolerance is multiplied by 10 at each 5 th step.	CO2	PO1 PO2	12
OR					
4	a)	What is a comparator? List the types of mechanical comparators.	CO2	PO1	04
	b)	Sketch and explain LVDT. Mention the advantages of LVDT.	CO2	PO1	08
	c)	Explain the principle of angle measurement using a bevel protractor.	CO2	PO1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III						
5	a)	With a block diagram, explain the elements of a generalized measurement system.	CO3	PO1	08	
	b)	Define (i) Accuracy (ii) Precision (iii) Resolution (iv) Threshold (v) Calibration (vi) Linearity	CO3	PO1	06	
	c)	Explain the working of electrokinetic transducer with a neat sketch.	CO3	PO1	06	
OR						
6	a)	What are the problems associated with mechanical type of signal conditioning devices? Explain any two in brief.	CO3	PO1	10	
	b)	Explain the use of ballast circuit with the help of a schematic diagram.	CO3	PO1	10	
UNIT - IV						
7	a)	Sketch & explain the working of a cantilever beam used for measurement of force.	CO4	PO1	08	
	b)	With a neat sketch, illustrate the measurement of torque using a Prony brake dynamometer.	CO4	PO1	08	
	c)	Write a short note on temperature compensation in strain gauges.	CO4	PO1	04	
OR						
8	a)	What is an RTD? Discuss briefly the three configurations of RTD with sketches. Also mention the disadvantages of RTD.	CO4	PO1	10	
	b)	Discuss the principle of working of an optical pyrometer with a schematic diagram. Also mention its applications.	CO4	PO1	10	
UNIT - V						
9	a)	What are CMM's? Discuss the modes of operation of CMMS's. Also list the major applications of CMM.	CO4	PO1	10	
	b)	With a schematic diagram, explain Universal measuring machine.	CO4	PO1	10	
OR						
10	a)	Give the classification of nanostructures and discuss their applications.	CO4	PO1	10	
	b)	Sketch and explain a laser deflection type instrument used as an atomic force microscope.	CO4	PO1	10	

B.M.S.C.E. - ODD SEM 2024-25