

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Semester: V

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 20ME5DERES

Max Marks: 100

Course: Renewable Energy Sources

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the general principles of energy conservations with examples	<i>CO1,2</i>	<i>PO1</i>	10
	b)	List any major advantages and disadvantages of Renewable Energy Sources	<i>CO1,2</i>	<i>PO1</i>	10
UNIT - II					
2	a)	What are solar collectors? Explain flat plate and parabolic collector?	<i>CO2</i>	<i>PO1</i>	08
	b)	A PV system feeds a dc motor to produce 1 hp power at the shaft. The motor efficiency is 85%. Each module has 36 multi-crystalline silicon solar cells arranged in 9×4 matrix. The cell size is 125 mm \times 125 mm and the cell efficiency is 12%. Calculate the number of modules required in the PC array. Assume global radiation incident normally to the panel as 1 kW/m ² . Represent the system in the form of a block diagram?	<i>CO2</i>	<i>PO2</i>	12
UNIT - III					
3	a)	Define the following terms with relevant expressions; i) Power Coefficient ii) Lift coefficient iii) Tip speed ratio iv) Solidity v) Drag coefficient	<i>CO3</i>	<i>PO1</i>	05
	b)	Draw a neat labeled vector diagram of all the forces acting on an elemental blade section of an aero-turbine and list all the notations used	<i>CO3</i>	<i>PO1</i>	05
	c)	With the help of block diagram, explain the functions of various components of Wind Energy Conversion Systems (WECS)	<i>CO5</i>	<i>PO1</i>	10
OR					
4	a)	Give the classification of wind energy conversion systems (WECS) based on Axis of rotation, size, output power, and rotational speed	<i>CO3</i>	<i>PO1</i>	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Explain any four design considerations of Horizontal Axis Wind Turbine (HAWT)?	CO3	PO1	05
	c)	Sketch and explain Horizontal Axis Wind Turbine (HAWT-single-blade) and also state its advantages and disadvantages?	CO3	PO1	10
		UNIT-IV			
5	a)	With a neat labeled diagram explain the common circular-fixed dome type of biogas digester.	CO4	PO1	10
	b)	Explain with a neat sketch, the cross-draft type of gasifier showing the various zones.	CO4	PO1	10
		OR			
6	a)	Explain the major problems associated with the development of gasifier technology	CO4	PO1	05
	b)	Explain environmental effects of Biogas.	CO4	PO1	05
	c)	A plant produces 1200 litres of biogas daily. Calculate the size of the gas holder and the gas holder capacity for a biogas plant that feeds a constant load during the following periods daily assuming uniform consumption of gas; From 0600 to 0800 hours (2 hours) From 1200 to 1400 hours (2 hours) From 1900 to 2100 hours (2 hours)?	CO4	PO2	10
		UNIT - V			
7	a)	With a neat sketch, explain the construction and working of a Polymer Electrolyte Membrane Fuel Cell with relevant reactions?	CO5	PO1	10
	b)	Explain with a block diagram, fuel cell based electric power plant	CO5	PO1	10
