

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Make-Up Examinations

Programme: B.E.

Branch: Mechanical Engineering

Course Code: 20ME5DERES

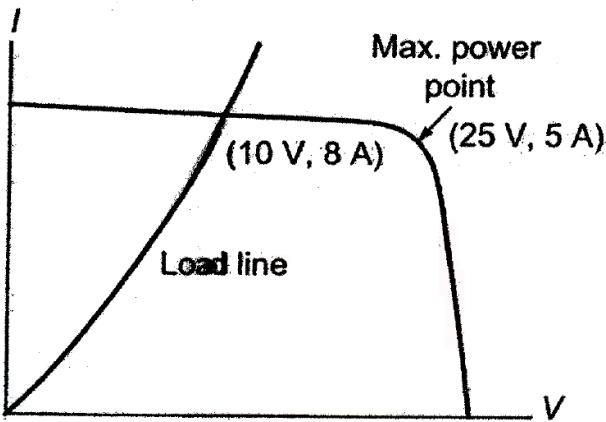
Course: Renewable Energy Sources

Semester: V

Duration: 3 hrs.

Max Marks: 100

Date: 17.05.2023


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may suitably be assumed.

UNIT - I

1	a) Explain the general principles of energy conservation.	05
	b) Explain the salient features of Energy Conservation Act 2001.	05
	c) What is Clean Development Mechanism (CDM)? Explain the five main steps of CDM project process.	10

UNIT - II

2	a) Explain with neat sketches, the effect of partial shadowing of a cell in an open-circuited series string of cells and complete shadowing of one cell in a short circuited, series string of cell.	05
	b) Draw the schematic diagram of a general grid-interactive solar PV system.	05
	c) A PV source having IV characteristics as shown in the below figure is supplying power to a load whose load line intersects the characteristics at (10 V, 8 A). Determine the additional power gained if an MPPT is interposed between the source and the load. If the cost of MPPT is Rs. 4000/-, for how long does the system need to operate in order to recover the cost of MPPT?. Assume the cost of the electricity to be Rs. 3/- per kWh and efficiency of MPPT to be 95%.	10

UNIT - III

3	a) Explain the major impacts of Wind turbines on the environment.	05
---	---	----

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Explain any five main design considerations of Horizontal Axis Wind Turbine with relevant plots, formulas and sketches. **05**

c) With a neat sketch, explain the working principle of a horizontal axis two blade type wind mill. **10**

OR

4 a) Draw a neat labelled vector diagram of all the forces acting on an elemental blade section of an aero-turbine and list all the notations used. **05**

b) Represent the basic components of wind Energy Conversion System in the form of a block diagram. **05**

c) Wind at 1 standard atmospheric pressure and 15 °C is blowing at an initial velocity of 15 m/s. Calculate:
 i) Total power density in the wind stream.
 ii) Maximum obtainable power density.
 iii) Reasonably obtainable power density, assuming efficiency to be 35%.
 iv) The total power.
 v) Torque and Axial thrust.

Given: Turbine diameter = 120 m, turbine operating speed = 40 rpm at maximum efficiency of propeller type turbine

UNIT - IV

5 a) Sketch and label the common circular fixed dome type biogas digester. **05**

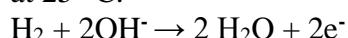
b) Explain any five site selection considerations for setting up a biogas plant. **05**

c) The following data are given for a family biogas digester suitable for the output of five cows: the retention time is 20 days, temperature 30 ° C, dry matter consumed per day is 2 kg, biogas yield is 0.24 m³ per kg. The efficiency of burner is 60 %, methane proportion is 0.8. Heat of combustion of methane = 28 MJ/ m³, Assuming the standard data for designing, Calculate: The volume of biogas digester and the power available from the digester.

OR

6 a) Represent the process of ethanol production from wood by acid hydrolysis in the form of a block diagram. **05**

b) Explain the major problems associated with the development of gasifier technology. **05**


c) With a neat sketch, explain the down draught type of gasifier depicting various temperature zones and reactions. **10**

UNIT - V

7 a) List and explain the common fuels used in fuel cells. **05**

b) Draw the schematic diagram of Polymer Electrolyte Membrane Fuel Cell with all the relevant reactions. Also list the desired properties of the membrane. **05**

c) A hydrogen-oxygen fuel cell in which the following reaction occurs, operates at 25 °C.

Calculate the voltage output of the cell, the efficiency and the electric work output per mole of H₂ consumed and per mole of H₂O produced. Also compute the heat transferred to the surroundings. Assume at 298 °K, $\Delta G^\circ = -237191$ kJ/kg mole and $\Delta H^\circ = -285838$ kJ/kg mole.
