

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: V

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 23ME5PCTFE/22ME5PCTFE

Max Marks: 100

Course: Thermal and Fluid Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define Turbo machine. With neat sketch, explain the working of a 'Turbo machine'.			<i>CO1</i>	<i>PO1</i>	06
		b)	From the performance curves of turbines, it is seen that a turbine of 1 m diameter acting under a head of one meter, develops a speed of 25 rpm. What should be the prototype diameter, if it develops 10000 kW working under a head of 200 m, with a so speed of 150.			<i>CO1</i>	<i>PO2</i>	07
		c)	Derive Euler's expression for energy transfer in turbo machines.			<i>CO1</i>	<i>PO1</i>	07
	OR							
	2	a)	Deduce the relationship for maximum power output of a Pelton Turbine.			<i>CO1</i>	<i>PO1</i>	10
		b)	In a Francis turbine the discharge is radial. The blade speed at inlet = 25 m/s. At the inlet tangential component of velocity =18 m/s. The radial velocity of flow is constant and equal to 2.5 m/s. Water flows at the rate of 0.8 m ³ /s. The utilization factor is 0.82. Find, i) Euler's head, ii) Power developed, iii) Inlet blade angle, and iv) Degree of reaction (R).			<i>CO1</i>	<i>PO2</i>	10
	UNIT - II							
	3	a)	In a radial outward flow turbomachine, with no whirl at inlet, the blade speed at the exit is twice that at inlet. Radial velocity is constant throughout. Taking the inlet blade angle as 45°. Show that the degree of reaction $R=(2+\cot\beta_2)/4$ where β_2 is the blade angle at exit with respect to tangential direction.			<i>CO2</i>	<i>PO1</i>	10
		b)	The following data refers to a centrifugal compressor with free air delivered =1200 kg/hr, $\eta_{iso} = 70\%$, and the suction conditions			<i>CO2</i>	<i>PO2</i>	10

		are 1 bar and 290° K. The velocity of air at entry is 60 m/s, total head pressure ratio = 3, mechanical efficiency is 95%. Find the total head, temperature of air at exit, and power required to run the compressor.			
		OR			
4	a)	Define; i) Surging, ii) Pre-whirl, iii) Choking, iv) Pressure coefficient, and v) Over all pressure ratio of a centrifugal compressor.	CO2	PO1	10
	b)	A centrifugal compressor rotor has inlet radius of 30 cm and exit radius of 60 cm, entry is radial with a component of 60 m/s which is const throughout. The compressor requires 700 kW of power to handle 20 kg of air per second. Find the blade angles at inlet and outlet, if the compressor runs at 5100 rpm. Calculate the width at inlet and outlet if the specific volumes at inlet and outlet are $0.85 \text{ m}^3/\text{kg}$ and $0.71 \text{ m}^3/\text{kg}$ respectively. What is the degree of reaction?	CO2	PO2	10
UNIT - III					
5	a)	With a neat sketch, explain the terminology of centrifugal pump and pump losses.	CO2	PO1	10
	b)	A centrifugal pump of 100×100 mm size has a suction lift of 2.5 m and a delivery lift of 28 m. the suction pipe is 3.5 m long and the delivery pipe is 22 m long. The friction factor = 0.025. Water enters radially and the outlet vane angle is 26° . Calculate the discharge and the input required, if the hydraulic efficiency is 0.75 and the mechanical efficiency is 0.88. The impeller is 30 cm dia and 2 cm wide with a speed of 1400 rpm.	CO2	PO2	10
OR					
6	a)	Define, 'slip', 'slip coefficient', and 'NPSH' of a centrifugal pump.	CO3	PO1	06
	b)	Explain, 'priming' and 'cavitation' in centrifugal pump.	CO3	PO1	08
	c)	Obtain the expression for minimum starting speed of a pump.	CO3	PO1	06
UNIT - IV					
7	a)	Derive exergy balance equation for a steady flow system.	CO3	PO1	10
	b)	Two kg of air at 5 bar 80° C expands adiabatically in a closed system until its volume is doubled and its temperature becomes equal to that of the surroundings which is at 1 bar 5° C. For this process determine; i) maximum work, ii) change in availability, and iii) irreversibility. For air consider $C_v=0.718 \text{ kJ/kg-K}$, $u=C_vT$, $R=0.287 \text{ kJ/kg-K}$.	CO3	PO2	10

			OR			
	8	a)	Air expands through a turbine from 5 bar 520°C to 1 bar 300°C. during expansion 10 kJ/kg of heat is lost to the surroundings which is at 0.98 bar, 20°C. Neglecting the KE, PE changes, determine per kg of air; i) decrease in availability, ii) maximum work, and iii) irreversibility. Consider, $h = C_p T$ and $C_p = 1.005$ kJ/kg K.	CO3	PO2	10
		b)	Explain second law efficiencies for the following system: i) Turbine, ii) Compressor, iii) Heat exchanger, and iv) Mixing of two fluids.	CO3	PO1	10
UNIT - V						
	9	a)	Derive an expression for thermal efficiency of 'Dual combustion cycle'.	CO4	PO1	10
		b)	An oil engine with 20 cm bore and 30 cm stroke works on diesel cycle. The initial pressure and temperature of air used are 1 bar 30°C, the cut-off is 10% of the stroke. Find, i) Air standard efficiency, iii) Mean effective pressure, and iii) Power developed by engine, if it works at 400 rpm. Take compression ratio as 16.	CO4	PO2	10
OR						
	10	a)	Define 'Knocking' and explain the factors that affects knocking.	CO4	PO1	10
		b)	A single cylinder 4-stroke cycle engine works on diesel cycle have following readings when running at full load. Area of indicator 3 cm ² , length of diagram 4 cm, spring constant = 10 bar/cm, N = 400 rpm, brake load = 380 N, spring reading is 50 N, dia of brake drum = 120 cm, fuel consumption = 2.8 kg/hr, Cv = 42,000 kJ/kg. Diameter of the cylinder = 16 cm, Stroke of the piston = 20 cm. Find, i) Frictional power, ii) Mechanical efficiency, iii) Brake thermal efficiency, and iv) Brake mean effective pressure.	CO4	PO2	10
