

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

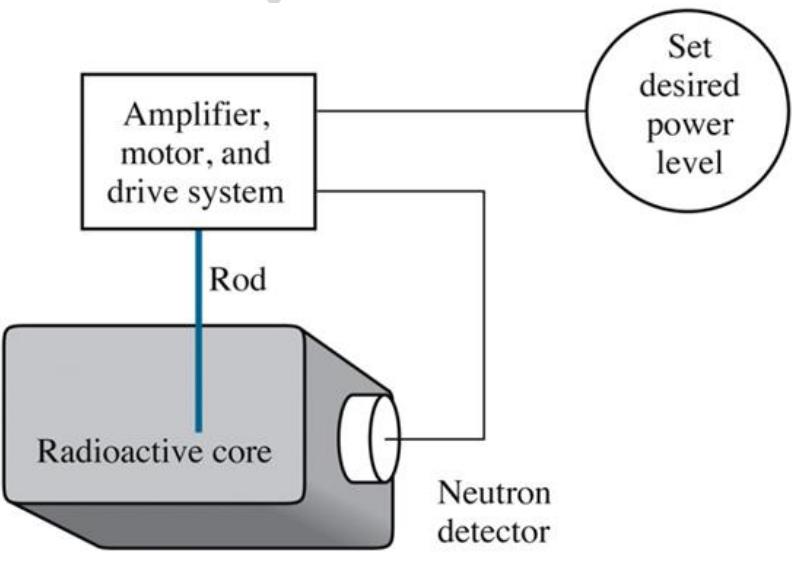
July 2023 Semester End Main Examinations

Programme: B.E.

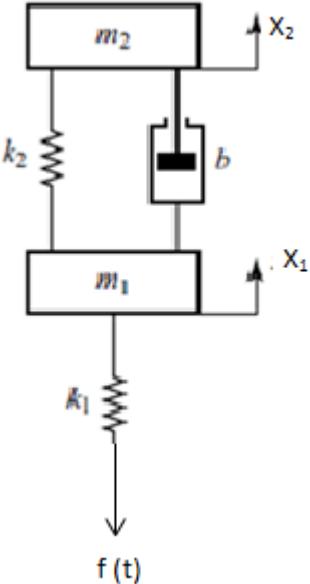
Branch: Mechanical Engineering

Course Code: 20ME6DCCOE / 16ME6DCCOE

Course: Control Engineering


Semester: VI

Duration: 3 hrs.


Max Marks: 100

Date: 22.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>In a nuclear power generating plant, heat from a reactor is used to generate steam for turbines. The rate of the fission reaction determines the amount of heat generated, and this rate is controlled by rods inserted into the radioactive core. The rods regulate the flow of neutrons. If the rods are lowered into the core, the rate of fission will diminish; if the rods are raised, the fission rate will increase. By automatically controlling the position of the rods, the amount of heat generated by the reactor can be regulated. Draw a functional block diagram for the nuclear reactor control system shown in Figure 1a. Show all blocks and signals.</p> <p>Figure 1a</p>	CO1	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Obtain the transfer function for the system shown in Figure 1b.	CO2	PO2	10																				
		<p>Figure 1b</p>																							
		OR																							
2	a)	Obtain the transfer function of an armature-controlled DC servo motor.	CO2	PO2	10																				
	b)	Obtain the state-space representation for the system shown in Figure 1b.	CO2	PO2	10																				
		UNIT - II																							
3	a)	Consider a unity feedback system with closed loop transfer function of the plant is $1/(s^3+3s^2+5s+2+K)$. When the system will become marginally stable and what is the corresponding frequency of oscillation.	CO4	PO2	10																				
	b)	Consider the second-order system with transfer function $\omega_n^2/(s^2+2\zeta\omega_ns+\omega_n^2)$. Assume that the requirements for the system unit-step response are overshoot $M_p \leq 20\%$ and 2% settling time $t_s \leq 2$ s. Sketch the allowable region for the poles in the s -plane.	CO3	PO2	10																				
		OR																							
4	a)	Find the steady state errors for unity feedback systems with plants of different types and for different inputs.	CO3	PO2	12																				
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th>Input</th> <th>Type 0</th> <th>Type 1</th> <th>Type 2</th> <th>Type 3</th> </tr> <tr> <td>step</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>ramp</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>parabola</td> <td></td> <td></td> <td></td> <td></td> </tr> </table>	Input	Type 0	Type 1	Type 2	Type 3	step					ramp					parabola							
Input	Type 0	Type 1	Type 2	Type 3																					
step																									
ramp																									
parabola																									
	b)	Find the unit step response for the transfer function $G(s) = \frac{s+10}{s^2+2s+5}$.	CO3	PO2	08																				

UNIT - III					
5		Sketch the root locus for open loop transfer function $K/[(s+1)(s+2)(s+4)]$ showing the salient points.	CO4	PO2	20
UNIT - IV					
6		Draw the bode plots for a unity feedback system with open loop transfer function $G(s) = 40/[(s+2)(s+4)(s+5)]$.	CO4	PO2	20
UNIT - V					
7	a)	Sketch the Nyquist diagram for the open loop transfer function $20(s+3)/[s(s+1)(s+4)]$ and comment on stability.	CO5	PO2	10
	b)	Draw the polar plot for $G(s) = 1/[(s+2)(s+4)]$.	CO5	PO2	10

B.M.S.C.E. - EVEN SEM 2022/23