

B.M.S. College of Engineering, Bengaluru-560019

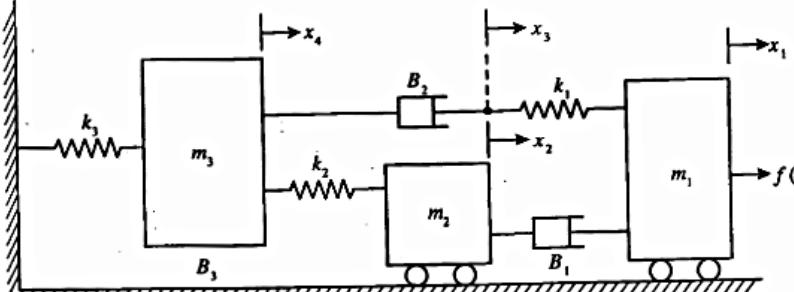
Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Mechanical Engineering

Course Code: 20ME6DCCOE


Course: Control Engineering

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With examples, discuss the principle of open loop and closed loop systems.	<i>CO1</i>	<i>PO1</i>	08
	b)	Derive the expression for Transfer Function of field-controlled DC motor.	<i>CO2</i>	<i>PO1</i>	08
	c)	Discuss the requirements of a good control system.	<i>CO1</i>	<i>PO1</i>	04
OR					
2	a)	Write the differential equations for the mechanical system shown in fig. 1	<i>CO2</i>	<i>PO1</i>	10
	b)	Obtain the state space model for n^{th} order differential equation.	<i>CO2</i>	<i>PO2</i>	10
UNIT - II					
3	a)	Derive an expression for the first order response for unit step input.	<i>CO3</i>	<i>PO1</i>	10
	b)	Deduce the positional, velocity and acceleration errors for type 0, type 1 and type 2 unity feedback system.	<i>CO3</i>	<i>PO1</i>	10
OR					
4	a)	Discuss the various standard input signals used to predict system behavior.	<i>CO3</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Applying Routh Hurwitz criterion, examine the stability of the system $S^4 + 2S^3 + 11S^2 + 18S + 18 = 0$	CO4	PO2	10
		UNIT - III			
5		Construct the Root Locus and comment on stability of the system for a unity feedback system with transfer function $G(S) = \frac{K}{S(S+4)(S^2+4S+20)}$	CO4	PO2	20
		UNIT - IV			
6		Draw the Bode plot and determine gain margin, phase margin, gain cross over frequency and phase cross over frequency for a system having open loop transfer function $GH(S) = \frac{10}{S(1+S)(1+0.02S)}$	CO5	PO2	20
		UNIT - V			
7	a)	Draw Polar plot of $G(S) = \frac{12}{S^2(S+1)(S+2)}$	CO4	PO1	08
	b)	Sketch the Nyquist diagram and ascertain the stability of a system $G(S)H(S) = \frac{100}{(1+2S)}$	CO4	PO2	12
