

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 20ME6DCCOE/16ME6DCCOE

Max Marks: 100

Course: Control Engineering

Date: 13.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Along with suitable examples, define the following terms: (i) Reference input, (ii) Controlled variable, (iii) Plant, (iv) Manipulated variable and (v) Disturbance. **10**

b) Determine the transfer function $G(s) = \frac{V_L(s)}{V(s)}$, for the circuit given in the Fig. 1(b). **10**

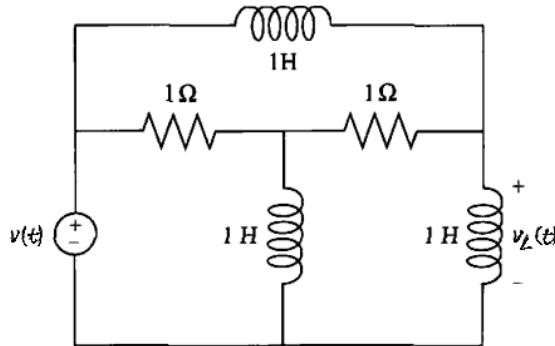


Fig. 1(b)

OR

2 a) Obtain transfer function between angular displacement of the motor, $\theta_m(s)$, and the armature emf, $E_m(s)$ for an armature controlled DC motor. **10**

b) Develop state-space representation for the mechanical system shown in Fig. 2(b). Consider $x_2(t)$ as the output. **10**

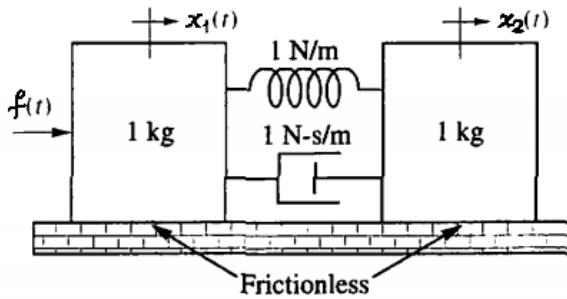


Fig. 2(b)

UNIT - II

3 a) For a first-order system without any zero, do the following: (i) derive unit-step response, (ii) define transient response specifications and (iii) derive expressions for rise time & settling time. 10

b) Fig. 3(b-i) shows a mechanical vibratory system. When 2 N of force (step input) is applied to the system, the mass oscillates as shown in Fig. 3(b-ii). Determine m , b and k of the system from this response curve. The displacement x is measured from the equilibrium position. 10

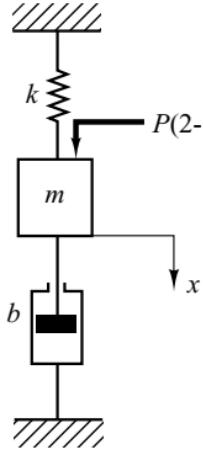


Fig. 3(b-i)

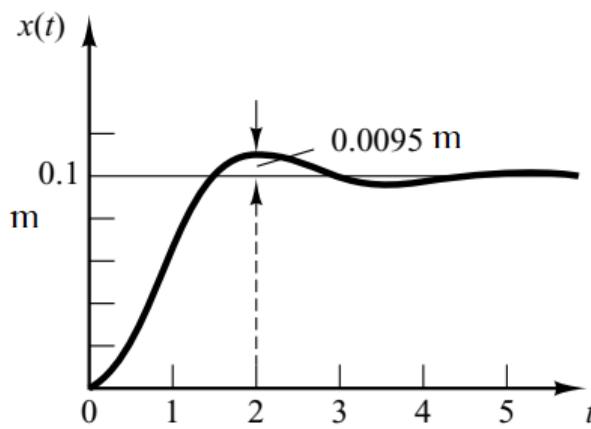


Fig. 3(b-ii)

OR

4 a) Determine the number of right-half-plane poles in the closed-loop transfer function: $T(s) = \frac{10}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}$ 10

b) Forward transfer function of a negative-unity feedback system is given by: 10

$$G(s) = \frac{K}{s(s+a)}$$

Determine the following: (i) K and a to yield $K_v = 1000$ and a 20% overshoot. (ii) K and a to yield a 1% error in the steady state and a 10% overshoot.

UNIT - III

5 For the system shown in the Fig. 5 below, draw the root locus graph. Determine the range of K within which the system is stable. Also, determine and indicate on the graph the following details: (i) the breakaway point on the real-axis, (ii) the exact point and gain where the locus crosses the $j\omega$ -axis and (iii) the exact point and gain where the locus crosses the 0.45 damping ratio line. 20

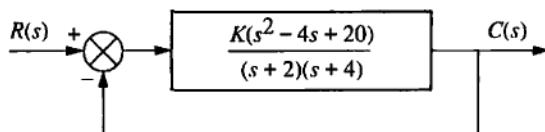


Fig. 5

UNIT - IV

6 A unity feedback control system has $G(s) = \frac{80}{s(s+2)(s+20)}$. Draw the Bode plot for this system. Also, determine ω_{gc} , ω_{pc} , G.M and P.M. Comment on the stability of the system. 20

UNIT - V

7 a) The open loop transfer function of a unity feedback system is given by 10
 $G(s) = \frac{1}{s(s+1)(2s+1)}$. Sketch the polar plot and determine the gain and phase margins of the system.

b) Using Nyquist criterion, determine whether the closed loop system having the following open loop transfer function is stable or not? 10

$$G(s)H(s) = \frac{1 + 4s}{s^2(1 + s)(1 + 2s)}$$
