

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester : VI

Branch: Mechanical Engineering

Duration: 3 hrs.

Course Code: 22ME6PCCOE

Max Marks: 100

Course: Control Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Discuss the requirements of a good control system.	CO1	PO1	06
	b)	For the electromechanical system shown in Fig. 1, find the transfer function $Y(s)/E(s)$. The coil has a back emf of $e_b = K_b (dy/dt)$ and the coil current produces a force of $F = k_m i$ on the mass m .	CO2	PO2	14
<p>Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.</p>					
		Fig. 1			
OR					
2	a)		CO2	PO2	08
		Fig. 2			

		For the mechanical system shown in Fig. 2, draw the equivalent mechanical network and obtain differential equations of equilibrium.			
	b)	Derive the expression for Transfer Function of field-controlled DC motor.	CO2	PO1	08
	c)	List out the differences between Open loop and Closed loop control systems.	CO1	PO1	04
UNIT - II					
3	a)	Derive an expression for the first order response for unit step input.	CO3	PO1	10
	b)	The open loop transfer function of a unity feedback system is given by $G(S) = \frac{10(S+2)}{S^2(S+1)}$ Find (a) Position, velocity and acceleration error constants (b) Steady state error when the input is $R(S) = \frac{3}{S} - \frac{2}{S^2} + \frac{1}{3S^3}$	CO3	PO2	10
OR					
4	a)	Applying Routh-Hurwitz criterion, find the range of k for stability of a system with open loop transfer function $GH(S) = \frac{K}{S(S+4)(S^2+2S+2)}$ Also determine the stability of the system when k=12	CO4	PO2	10
	b)	A unity feedback system has the open loop transfer function $G(S) = \frac{25}{S(S+5)}$ Determine the following for a unit step input (a) Maximum Overshoot (b) Peak time (c) Rise time (d) Settling time	CO3	PO2	10
UNIT - III					
5		Draw the root locus and find the range of k for a unity feedback system with transfer function $G(S) = \frac{K(S+6)}{S(S+1)(S+2)}$	CO4	PO2	20
OR					
6		Construct the Root Locus for a unity feedback system with $G(S) = \frac{K(S+1)}{S^2(S+3)(S+5)}$ and find the range of k for system stability.	CO4	PO2	20
UNIT - IV					
7		Draw the Bode plot and determine gain margin, phase margin, gain cross over frequency and phase cross over frequency for a system having open loop transfer function	CO4	PO2	20

		$GH(S) = \frac{80}{S(S+2)(S+20)}$			
		OR			
8		Draw the Bode plot and determine the value of k for which the system is marginally stable, the transfer function of the unity feedback system being $GH(S) = \frac{k}{S(S+4)(S+10)}$	<i>CO4</i>	<i>PO2</i>	20
		UNIT - V			
9	a)	Investigate the stability of a system with open loop transfer function Sketch the Nyquist plot of $G(S)H(S) = \frac{K}{(S+1)(S+2)(S+3)}$ Find the range of K.	<i>CO4</i>	<i>PO2</i>	12
	b)	Draw Polar plot for transfer function $G(S) = \frac{12}{S^2(S+1)(S+2)}$	<i>CO4</i>	<i>PO1</i>	08
		OR			
10	a)	Using Nyquist stability criterion, determine the value of k for the stability of system with open loop transfer function $G(S) = \frac{k(S+3)}{S(S-1)}$	<i>CO4</i>	<i>PO2</i>	12
	b)	Draw Polar plot for transfer function $G(S) = \frac{12}{S(S+1)(S+2)}$	<i>CO4</i>	<i>PO1</i>	08
