

# B.M.S. College of Engineering, Bengaluru-560019

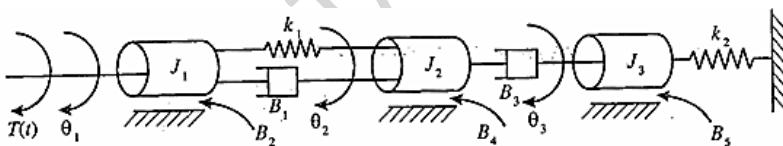
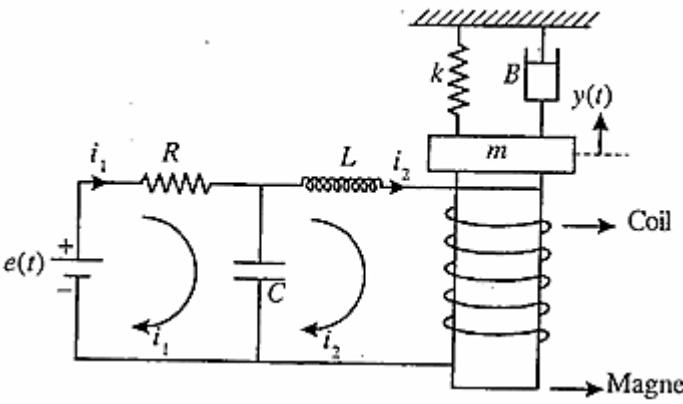
Autonomous Institute Affiliated to VTU

## October 2024 Supplementary Examinations

**Programme: B.E.**

**Branch: Mechanical Engineering**

**Course Code: 22ME6PCCOE**



**Course: Control Engineering**

**Semester: VI**

**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| UNIT - I  |    |                                                                                                    | CO  | PO  | Marks     |
|-----------|----|----------------------------------------------------------------------------------------------------|-----|-----|-----------|
| 1         | a) | Derive the expression for transfer function of an armature-controlled DC motor.                    | CO2 | PO2 | <b>08</b> |
|           | b) | Discuss the requirements of a good control system.                                                 | CO1 | PO1 | <b>04</b> |
|           | c) | Differentiate between open loop and closed loop control systems.                                   | CO1 | PO1 | <b>08</b> |
| <b>OR</b> |    |                                                                                                    |     |     |           |
| 2         | a) | Write the differential equations for the system shown in Fig. 1                                    | CO2 | PO2 | <b>06</b> |
|           |    |  <p>Fig. 1</p> |     |     |           |
|           | b) | Derive the transfer function $Y(S)/E(S)$ for the electromechanical system shown in Fig.2           | CO2 | PO2 | <b>14</b> |
|           |    |  <p>Fig. 2</p> |     |     |           |
| UNIT - II |    |                                                                                                    |     |     |           |
| 3         | a) | Discuss the various standard input signals used to predict system behavior.                        | CO3 | PO2 | <b>10</b> |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|   |    |                                                                                                                                                                                                                                                                                                                                           |     |     |           |
|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   | b) | <p>A unity feedback system has open loop Transfer Function</p> $G(S) = \frac{10}{S^2 + 2S + 6}$ <p>For unit step input, determine:</p> <ul style="list-style-type: none"> <li>(i) Undamped natural frequency,</li> <li>(ii) Damping ratio,</li> <li>(iii) Peak Overshoot,</li> <li>(iv) Peak Time,</li> <li>(v) Settling Time.</li> </ul> | CO3 | PO2 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                 |     |     |           |
| 4 | a) | Determine the value of K applying Routh-Hurwitz criterion for the stability of the system, $2S^4 + 3S^3 + 4S^2 + S + K = 0$ .                                                                                                                                                                                                             | CO4 | PO2 | <b>10</b> |
|   | b) | Deduce the positional, velocity and acceleration error constants.                                                                                                                                                                                                                                                                         | CO3 | PO2 | <b>10</b> |
|   |    | <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                                         |     |     |           |
| 5 |    | Construct the Root Locus and determine the range of K for stability of unity feedback system with transfer function,<br>$G(S) = \frac{K}{S(S+1)(S+2)(S+3)}$ .                                                                                                                                                                             | CO4 | PO2 | <b>20</b> |
|   |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                                          |     |     |           |
| 6 | a) | Draw Polar plot for the system with open loop transfer function as,<br>$G(S) = \frac{12}{S^2(S+1)}$ .                                                                                                                                                                                                                                     | CO4 | PO2 | <b>08</b> |
|   | b) | Sketch the Nyquist diagram and ascertain the stability of a system, for the transfer function,<br>$G(S)H(S) = \frac{K}{(S+1)(S+2)(S+3)}$                                                                                                                                                                                                  | CO4 | PO2 | <b>12</b> |
|   |    | <b>UNIT - V</b>                                                                                                                                                                                                                                                                                                                           |     |     |           |
| 7 |    | Draw the Bode plot and determine gain margin, phase margin, gain cross over frequency and phase cross over frequency for a system having open loop transfer function,<br>$G(S) H(S) = \frac{10.5}{(S+0.2)(S+0.8)(S+10)}$ .                                                                                                                | CO4 | PO2 | <b>20</b> |

\*\*\*\*\*