

B.M.S. College of Engineering, Bengaluru-560019

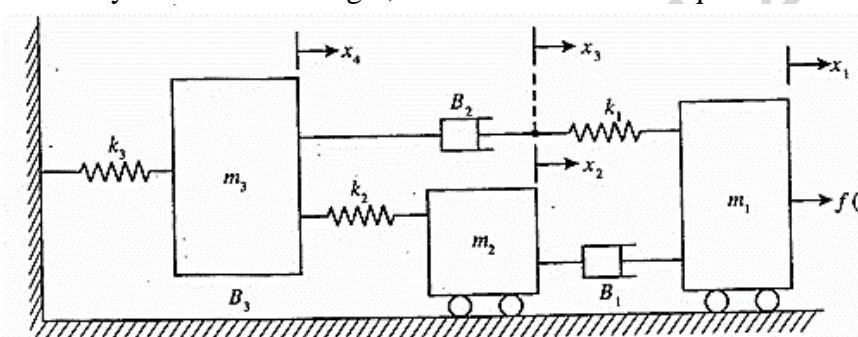
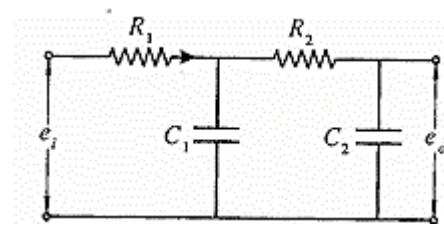
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Program: B.E.

Branch: Mechanical Engineering

Course Code: 20ME6DCCOE



Course: Control Engineering

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	For the system shown in Fig.1, write the differential equations	<i>CO2</i>	<i>PO2</i>	10
		<p style="text-align: center;">Fig. 1</p>			
	b)	What are the different types of control systems? Discuss in detail.	<i>CO1</i>	<i>PO1</i>	10
	OR				
2	a)	Obtain the transfer function $\frac{E_o(s)}{E_i(s)}$ of the circuit shown in Fig. 2	<i>CO2</i>	<i>PO2</i>	10
		<p style="text-align: center;">Fig. 2</p>			
	b)	Derive the expression for Transfer Function of armature-controlled DC motor.	<i>CO2</i>	<i>PO2</i>	10
	UNIT - II				
3	a)	Determine the value of K applying Routh Hurwitz criterion for the stability of the system $s^4 + 5s^3 + 5s^2 + 4s + K = 0$	<i>CO3</i>	<i>PO2</i>	10
	b)	Discuss any four standard test input signals used in control system.	<i>CO3</i>	<i>PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR			
4	a)	The open loop transfer function of a negative unity feedback control system is $G(s) = \frac{25}{s(s+5)}$. Obtain Maximum overshoot, Peak Time, Rise Time, Settling Time	<i>CO4</i>	<i>PO2</i>	10
	b)	A unity feedback system has open loop Transfer Function $G(s) = \frac{10}{s^2 + 2s + 6}$ For unit step input, determine (i) Undamped natural frequency (ii) Damping ratio (iii) Peak Overshoot (iv) Peak Time (v) Settling Time	<i>CO3</i>	<i>PO2</i>	10
		UNIT - III			
5	Construct the Root Locus and determine the range of K for stability of unity feedback system with transfer function $G(S) = \frac{K}{s(s^2+5s+6)}$		<i>CO4</i>	<i>PO2</i>	20
		OR			
6	Construct the Root Locus and determine the range of K for stability of unity feedback system with transfer function $G(S) = \frac{K}{s(s^2 + 4s + 7)}$		<i>CO4</i>	<i>PO2</i>	20
		UNIT - IV			
7	a)	Draw Polar plot for system with open loop transfer function $G(S) = \frac{1}{s^2(s+1)}$	<i>CO4</i>	<i>PO2</i>	08
	b)	Sketch the Nyquist diagram and determine the nature of stability of a system with open loop transfer function $G(s)H(s) = \frac{12}{s(s+1)(s+2)}$.	<i>CO4</i>	<i>PO2</i>	12
		OR			
8	a)	Draw Polar plot for system with open loop transfer function $G(s) = \frac{12}{s^2(s+1)(s+2)}$	<i>CO4</i>	<i>PO2</i>	08
	b)	Sketch the Nyquist diagram and determine the nature of stability of a system with open loop transfer function $G(s)H(s) = \frac{100}{(1+2s)}$.	<i>CO4</i>	<i>PO2</i>	12
		UNIT - V			
9	Draw the Bode plot and determine gain margin, phase margin, gain cross over frequency and phase cross over frequency for a system having open loop transfer function, $G(s)H(s) = \frac{10}{s(1+s)(1+0.02s)}$		<i>CO4</i>	<i>PO2</i>	20
		OR			

	10	<p>Construct Bode plot and determine gain margin, phase margin, gain cross over frequency and phase cross over frequency for a system having open loop transfer function,</p> $G(s)H(s) = \frac{10.5}{(s+0.2)(s+0.8)(s+10)}.$	CO4	PO2	20
--	----	---	-----	-----	----

B.M.S.C.E. - EVEN SEM 2024-25